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Introduction

This critical review will analyze an important paper in the area of systems identification and relate 
its insight to the specific engineering task of developing a better kinematic model of the Revolving 
Needle Driver (RND) robot, specifically its Remote Center of Motion (RCM) module.  The Remote 
Center of Motion is a concept central to laparoscopic surgery.  The idea is that an end effector can be 
constrained at a point which is not directly attached to the robot.  This is useful in needle insertion, 
where the insertion point should remain fixed while the needle probes a conical volume inside the skin.  
A well-known example of this approach is the DaVinci medical robot, which performs laparoscopic 
surgery through remote control with a constrained parallelogram mechanism.  While some movement 
of the RCM point is allowable in less dextrous clinical applications, more precise RCM modules are 
needed in for ocular surgery and other micro-surgical fields.  This RCM is a common stage and is 
present in several robots designed by the URobotics Laboratory.  It currently has some error due to 
unknown imperfections which arose during construction.  With knowledge of the inputs and outputs 
to this system, we must develop a new model which will explain its behavior.

Currently the end effector (needle tip) position is modeled as a function of three inputs.  These are 
RCM angle 1 (the ‘base’ or ‘X’ angle), RCM angle 2 (the ‘Y’ angle), and needle insertion depth.  The 
RCM angles both have constant offsets.  Our task is to observe tip positions at an array of known joint 
angles and fixed depth with a Polaris optical tracker, and compare with the expected tip placement.   
Knowing the errors, we can determine if the robot has a high precision and a low accuracy, which could 
be fixed by a calibration of some parameters (link length, joint angles, etc), or if it has low precision 
and high accuracy, in which case the kinematic model will need to be rewritten using new basis 
functions.  This process will iterate until we converge on a model with more reasonable error.

Paper -  “Nonlinear Black-box Modeling in System Identification – a Unified Overview”

The paper in question was written by Jonas Sjoberg et al in 1995.  Chosen for its breadth and 
depth, it is meant to serve as an introduction to systems identification and parameter estimation for all 
branches of applied mathematics including engineering, biology, medicine, and computer science.  
Written from a statistical perspective, it may take some adaptation of mathematics to apply its insight, 
and we will use only the most relevant information. The examples given are of a higher mathematical 
abstraction than is necessary for many purposes, but serve as a good overview.  It also contains a great 
blueprint for systems identification which can be applied to the link parameter problem in the RND 
robot.

We start with a categorization of the system which we are trying to model.  The authors refer to 
three cases: white, grey and black box systems.  White signifies that all contributing factors are known 
from prior knowledge and physical insight.  Grey-box models are applicable when some parameters are 



known, but others must be determined experimentally.  This is the case which interests us.  It occurs 
when a model (kinematic or otherwise) has some free undetermined parameters.  The sub-case 
especially applicable is that of physical modeling, which will hopefully explain error in the RCM 
module.  It is more likely that the combination of many errors from the RCM and small errors in the 
optical tracker will nudge the project towards the realm of semiphysical modeling, where some insight 
from geometric information can be subjected to black-box techniques, which the authors explain in 
depth.  

Black-box modeling is preformed when no prior model of the system is known.  All that is 
available are the observed inputs and outputs, and what is desired is a relationship between past I/O 
data and future outputs.  

This relationship should contain a finite number of parameters (θ) which will typically correspond 
to the scale and location of relationship support, and restrict the function to a family of mathematical 
structures.  This family of model structures is still too broad, so it is written as a function of: 
‘parameters’ and a nested ‘function of past I/O pairs’.  The nested function of past I/O is called the 
regression vector (φ) and can itself be parametrized.  There is great research into the types of regressors 
which will model certain situations well, and they can become arbitrarily complex as the number of 
parameters grows.  The authors describe several nonlinear models derived from varying regression 
functions.

These parameters and regressors are part of nonlinear mappings (g) from the regression space to 
output space.  One can conceive these mappings as a family of function expansions with scaled basis 
functions ( g k ) of regressors.  The parameters and basis functions provide a good framework for 
most black-box modeling structures.

In fact, many nonlinear black-box systems can be described by parameterizing a single ‘mother 
basis function’ called κ(x).  This mother basis function will be a function of the regression vectors, a 
directional scaling term, and a translational (offset) term.  The authors provide multiple examples 
differentiating specific structures of these basis functions and parameters.



Individual basis functions must be built from the mother basis function.  Single variable basis 
functions can be classified as global or local, depending on their range of support, while multivariable 
basis functions require more advanced techniques for their construction which may provide a better fit 
in multiple directions.  The authors show construction of the mother basis function in three ways, each 
giving different directional support in output space.  The first gives radial support which decays as 
distance from the offset grows.   The second gives semiglobal support focused on a function in 
regression space, which can be visualized as unbounded support along a ridge.  The third is the 
construction of a tensor product which can give varying support in different directions, but should not 
be used in high-dimensional cases due to high computational cost.  Before we estimate too many 
variables, it is important to stop and look at what information is already available.

One should not estimate what is already known.  Parametrization of measured geometries will lead 
to unstable or overconstrained models.  So it is useful to connect the system under scrutiny to some 
similar, more determined system.  The authors show this by defining model quality as the difference 
from the ‘true’ model g0 , which is observed data in most cases.  The difference contains noise as 
well as two important parts: bias and variance.  Bias is the difference between the best model in this 
family θm  (of dimension m) and the true model.  Variance is the difference between the current 
model θ N (with N regressor-output pairs) and the best model. 

So it is with low variance and easily observable bias that we may find a better model.  If the best 
model is known, then adding more parameters will decrease the bias.  However, if the best model is 
estimated, adding more parameters may decrease overall model quality if the reduction in bias is less 
than expected variance.  So it is wise to consider the family of models best suited for each system and 
not to add parameters ‘spuriously’. Here model quality is stated in terms of bias and variance:

The authors discuss several methods to tease out the parameters which are most important for a 
given model structure.  One such method is called regularization, which attaches a penalty to a 
parameter to discover those which affect the model quality most.  Another idea is to omit basis 
functions selectively, perhaps removing those below a threshold.  For all methods presented, the idea is 



to iterate parameter selection processes with more expected data sets and to ‘train’ the model to fit the 
data.  

With each training iteration, the number N of regressor-output pairs grows.  If this process is 
carried out, the model will be overwhelmed with parameters, and subsequent decreases in bias will be 
dominated by higher variance costs.  This is the tradeoff which results in an ‘efficient’ number of 
parameters.  

This is the general process of black-box systems identification.  The authors spend the remainder 
of their time confronting structural issues in specific model families by presenting key examples, none 
of which are directly applicable to the complex task of RCM module parameter estimation. In the 
example below (patient's glucose levels), the original function is modeled by the dashed line. The 
model on the left is generated from initial patient data and regression model, and the right is generated 
by an optimization which learns from repeated trials. This optimization clearly generates a better 
model, and it is what we will need to do in our limited case of the RND.

Assessment

Although no novel methods are presented, the overview is given using a common framework and 
serves the interests of the user well.  It is significant that the authors could complete such a broad 
overview of the field by using relatively simple algorithmic steps which are generalizable to a large 
number of systems.  The statistical approach encompasses a wider net of applications and succinctly 
explains a difficult and unknown problem.  The accompanying techniques vary widely in their 
complexity, showing that the results of a systems identification often depend on analysis depth 
determined by the identifier.  The paper is organized well.  First a general approach to systems 
identification is given, which is accompanied by classes of regressors and basis functions previously 
established.  Then several examples show the effectiveness and weaknesses of these methods.  

This paper is an important tool for those confronted with a systems identification problem for 
which there is little other prior art.  When a novel system must be identified, the general steps outlined 
in this paper will guide an analysis which can be arbitrarily complex.  The range of applications 
presented drives a high citation rate in numerous fields.  It is thorough and broad, but what can we use 
for the link parameter estimation of an RCM?  

The paper contains examples applicable to everything from neural networks to DC motors.  It 



describes many high-level mathematical techniques for explaining the ‘error’ in systems by identifying 
the structure and parameters of an enhanced model.  However, this desire to be broadly applicable leads 
to such a diverse array of examples that the paper can seem unfocused and irrelevant at times.  There is 
a trade off between universality and extraneous information, much like the trade off between variance 
and bias.  If too much information is included, the user/model will be overwhelmed.  Therefore it is 
desirable to pick portions of the approaches described which will work for the current situation.  Some 
topics explored are not relevant to our modeling of the RND robot.  For example, the paper 
incorporates fuzzy logic, the notion that reasoning can be approximate, and a Boolean value may have 
a value between 0 and 1. We will not look at the fuzzification of link parameters directly, but we will 
group them into larger sets of parameters which may be easier to estimate in a simplified system.   
Although it is stated that System Identification cannot be fully formalized or automated, the summary 
at the end of the paper provides a great guide for anyone performing systems identification, and will be 
broken down in the following paragraphs and related to the project task.

The fist step in system identification is to look at the data output by the system.  It can be assumed 
the input variables are known fairly accurately.  Since the output does not match the expected result, 
there must be some error in the output data.  By observing the errors, one may be able to determine 
possible causes.  For example, does the error change proportionally to an input joint angle?  In what 
directions is the error growing?  Are there certain regions of the robotic workspace which experience 
noticeable changes in error?  Does the error change with time?  These questions are best answered by 
collecting output data from single inputs.  In the RND case, RCM error could be observed by actuating 
both rotary joints independently at all possible configurations and observing the needle tip position for 
a fixed insertion depth.  RCM error is clearly a function of the three input parameters previously 
mentioned, but correction will focus on the RCM module which actuates the two rotation angles.  The 
RND robot was selected for this project due to its precise control over needle insertion depth.

After observing modeling errors, correction by systems identification should start with the simplest 
explanation.  This may not account for all observed error, but will serve as a first step for the process of 
iteration.  By starting simply, one may find physical insights or linear models to explain the error, 
which is highly desirable.  Our analysis of the RCM module should start as a grey-box model, using a 
mechanical dissection to inform ‘known’ parameters.  Estimation of a more correct model will begin 
from this idealized version.  For example, an additional parameter may be an offset angle not 
previously recognized.  A misalignment of the RCM module links may necessitate basis function 
expansion to rotate about the misaligned axis.  As the number of parameters increases, the complexity 
of the model grows and becomes harder to estimate with successive iterations.  It should always be a 
goal, especially of the engineer, to look for parametrization with physical justification.  The authors 
emphasize this even throughout discussion of black-box techniques, where physical insight is typically 
not available.  It is important to look for these intuitive explanations because they can explain the I/O 
relationship with fewer parameters than arbitrary basis functions, leading to a higher quality model 
faster.

Quality criterion for parameter estimation can be deconstructed into two parts, bias and variance.  
When collecting data, it is desirable to have low variance in order to observe, and correct for, more 
bias.  It is the bias which informs the parameters, while variance can be characterized with an error 
term.  There can be an increase in true approximation with an increase in the number of basis functions. 



However, with more basis functions comes more variance.  Ideally, there should be a minimization of 
bias with the use of a few basis functions.  This requires the basis functions to be efficient.  Smart 
modeling will use an efficient number of basis functions which accept a limited number of parameters 
with great effect.  For this, the observed bias should be as pronounced as possible.  It is necessary for 
us to tease out much variance, as the bias which we wish to observe is very small, in the millimeter 
range.  Therefore noise must be reduced at all stages of observation.  This includes noise in encoder 
count/joint angle ratios, noise in the optical tracker, noise due to room vibrations, and other sources of 
extraneous variance which will cloud the observation of model bias.  

Future research in this field should focus on the identification of model families (of basis 
functions) which work well for certain applications.  This will hopefully move the modeling of more 
systems from the black-box class to the grey or white-box classes.  A general framework has been laid 
out here with relevance to many specific cases, so the majority of work in the field will relate to 
expanding the quality and number of models which fit novel data well.

Future research for our project should focus on grey-box systems identification, as we already 
know some of the model parameters and what basis functions would be appropriate.  These are link 
parameters and joint angles informing orthonormal rotation matrices.  Hopefully we will be able to 
identify linear basis functions with physically intuitive parameters.  However, it is beneficial to start 
with the most difficult case of systems identification and then make assumptions, this is why reading 
starts with the nonlinear black-box case.

Application

For our purposes, the grey-box case is applicable. We know some forward kinematics of the RND 
robot, and would like to optimize a few parameters. 

The RND robot uses 2 rotations and 1 translation to take the needle tip to the world frame which is 
fixed at the RCM. This transformation can be discribed by an Euler angle formulation with 3 rotations 
about the axes, and the same translation. We can also add offset terms to any variable. Here we will add 
them to the needle depth, Rx angle, and Ry angle. This is shown in the following MATLAB excerpt. 
Note that the addition of these parameters causes the equation to be cut off.



This is our relationship between the inputs (angles) and the outputs (XYZ) coordinates. It is a 
transformation matrix with mostly sinusoidal regression functions. The procedure for grey-box 
estimation is simpler than the black-box case, as we can guess and add parameters with physical 
intuition. But the advice of the black-box case holds generally. When these three parameters are 
optimized and learn over iterations, the regression function will more closely match the real world. I 
have optimized these parameters by training them to a data set of XYZ coordinates recorded by a 
Polaris optical tracker, and attached the results:

Targeting Accuracy (mm) Before Optimization After Optimization

1.88 1.14

This accuracy is a mean norm error between the model and observed. Optimization of these 
parameters helps take care of many other errors which were not modeled. It increases accuracy beyond 
the few mechanical parameters which were available for adjustment on the robot.

Conclusions



This paper has great value to many fields, and lays out a useful framework for our purposes, even 
if a large portion of content is not relevant.  It directly addresses the questions which arise during 
systems identification and tries to guide user choices towards a successful application.  It is left to the 
user to research specific mathematical techniques most applicable to their situation, as is the case for 
much of systems identification.  It is a great starting point for estimation of the unknown.  
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