Seminar Presentation Systems Identification (RCM)

Ryan Decker - Group 6

Project Background

- There is some error in Revolving Needle Driver (RND) robot
- Actual kinematic description does not match idealized version
- Reality may be complicated
- Must determine a more accurate model based on behavior
- Must do Systems Identification
 - White-box
 - Grey-box
 - Black-box

Paper selection and why?

- Nonlinear black-box modeling in system identification a unified overview
- Jonas Sjöberg et al.
- Great starting point for those trying to identify parameters in unknown systems
- Broadly applicable
- Written for the user

Necessary background

- Systems ID can't be 'formalized, automated'
- Methods can be novel

Background continued

- Systems ID finds a relationship between input and output
- Must choose basis functions and parameters

What the authors did

- Summarize the field of systems ID with a common approach
- Explain major choices systems identifiers will face
- Provide examples which help answer structural issues (of function choice)

General Approach

Inputs and Outputs

 $u' = [u(1) \quad u(2) \quad \dots \quad u(t)],$

 $y' = [y(1) \ y(2) \ \dots \ y(t)].$

Looking for relationship

$$y(t) = g(u^{t-1}, y^{t-1}) + v(t).$$

Approach continued

Relationship can be decomposed into parameters and function of past I/O

$$g(u^{t-1}, y^{t-1}, \theta) = g(\varphi(t), \theta),$$

where

$$\varphi(t)=\varphi(u^{\prime-1}, y^{\prime-1}).$$

Function of past I/O pairs is regression vector

Approach continued

The mapping

 $g(\varphi, \theta),$

which for any given θ goes from \mathbb{R}^d to \mathbb{R}^p . Can be written as a sum (family) of <u>basis</u> <u>functions</u>

$$g(\varphi, \theta) = \sum \alpha_k g_k(\varphi).$$

Approach continued

Basis functions can be constructed from single 'mother basis function'

$$g_k(\varphi) = \kappa(\varphi, \beta_k, \gamma_k)$$
 '= $\kappa(\beta_k(\varphi - \gamma_k))$ '.

With scaling (directional) and offset terms determining region of support

Ex: k(x) = cos(x): Basis functions = Fourier

Basis function construction

Radial Construction

$$g_k(\varphi) = g_k(\varphi, \beta_k, \gamma_k) = \kappa(\|\varphi - \gamma_k\|_{\beta_k}),$$

Support diminishes by scale factor with distance from offset

The most homogeneous choice

Basis function construction (cntd)

Ridge Construction

$$g_k(\varphi) = g_k(\varphi, \beta_k, \gamma_k)$$

= $\kappa(\beta_k^{\mathrm{T}}\varphi + \gamma_k), \quad \varphi \in \mathbb{R}^d.$

Unbounded support in subspace along 'ridge' of scaling (direction) function

• These basis functions can yield recognizable structures

Basis function construction (cntd)

Tensor Product of d (dimension) basis functions $g_1(\varphi_1) \dots g_d(\varphi_d)$.

Can behave very differently in arbitrary directions

Computationally expensive for high-dimension case

Model Quality

True model

$$y(t) = g_0(\varphi(t)) + e(t)$$

Quality

$$\bar{V}(\theta) = E \| y(t) - g(\varphi(t), \theta) \|^2$$
$$= \lambda + E \| g_0(\varphi(t)) - g(\varphi(t), \theta) \|^2$$

Model Quality and Variance

Best fit (#parameters=m) minimizes variance $\theta_*(m) = \arg\min_{\theta} \overline{V}(\theta)$

Quality of a specific model with N I/O pairs

 $E\bar{V}(\hat{\theta}_N) = V_*(m).$

Bias and Variance

Decompose deviation from true model

 $V_*(m) = E\overline{V}(\hat{\theta}_N)$ $= \lambda + E \|g_0(\varphi(t)) - g(\varphi(t), \hat{\theta}_N)\|^2$ $\approx \lambda + E \|g_0(\varphi) - g(\varphi, \theta_*(m))\|^2$ bias noise + $E \|g(\varphi, \theta_*(m)) - g(\varphi, \hat{\theta}_N)\|^2$. variance

What will help with bias?

Within a known model family:

- Increasing number of parameters will give better overall model quality
- Increasing number of basis functions will reduce variance

$$\hat{\theta}_N \to \theta_*(m)$$

How will this affect variance in unknown model families with novel mother basis functions?

What will help with variance?

Variance is a function of # of parameters and # of regressor-output pairs (w/ error variance)

$$E \| g(\varphi(t), \hat{\theta}_N) - g(\varphi(t), \theta_*(m)) \|^2 \approx \lambda \frac{m}{N}$$

Giving model quality succinctly

$$V_*(m) = E\bar{V}(\hat{\theta}_N) = \lambda + \lambda \frac{m}{N}$$

$$+ E \|g_0(\varphi) - g(\varphi, \theta_*(m))\|^2$$

$$= \bar{V}(\theta_*(m)) + \lambda \frac{m}{N}.$$

Advice

- Look at data
- Try and find physically intuitive explanation
- Pick efficient basis functions
- Do not add parameters 'spuriously'
- Do not add basis functions unless you are confident about the mother basis function
- Remember tradeoff between bias and variance

Significance of key result

- No new 'results'
- Significant due to comprehensive nature of paper - all described from a common framework
- Has great benefit for researchers in an array of fields - user focused

My assessment

- Important as a blueprint for Systems ID
- Only most general abstractions reviewed are applicable to RCM link parameter estimation
- Good
 - Broad
 - Written from users perspective
- Bad
 - Not all applicable
 - Desire to be broad leaves out many specific mathematical processes

Applicability

Suppose needle tip position in base coordinates is a function of 3 parameters: Θ 1, Θ 3+ Υ (offset), L

• Rotation about Z Rotation about Z $Rb1 = \begin{pmatrix} \cos [\theta 1] & -\sin [\theta 1] & 0 \\ \sin [\theta 1] & \cos [\theta 1] & 0 \\ 0 & 0 & 1 \end{pmatrix}$ • Rotation about X $R2t = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos [\theta 3 + \gamma] & -\sin [\theta 3 + \gamma] \\ 0 & \sin [\theta 3 + \gamma] & \cos [\theta 3 + \gamma] \end{pmatrix}$

Idealized model: [xyz]=Rb1*R2t*[0;-L;0]

'Reality'

Accounting for additional parameter

• Rotation about Y $R12 = \begin{pmatrix} cos \\ 0 \end{pmatrix}$

$$R12 = \begin{pmatrix} \cos[\beta] & 0 & \sin[\beta] \\ 0 & 1 & 0 \\ -\sin[\beta] & 0 & \cos[\beta] \end{pmatrix}$$

 Resulting in a new model: [xyz] =Rb1*R12*R2t*[0;-L;0]

Next steps

- Future research in Systems ID should focus on expanding catalogue of basis functions
- This will move more problems from blackbox to grey-box, white-box
- Future reading for our project should focus on grey-box systems identification

Conclusions

- Great paper!
- Very useful to many people
- Needs some interpretation to apply
- Desire to be broad excludes specific path
 - Kind of like variance vs bias

S0,

Questions?