Seminar Presentation Systems Identification (RCM)

Ryan Decker - Group 6

Project Background

- There is some error in Revolving Needle Driver (RND) robot
- Actual kinematic description does not match idealized version
- Reality may be complicated
- Must determine a more accurate model based on behavior
- Must do Systems Identification
- White-box
- Grey-box
- Black-box

Paper selection and why?

- Nonlinear black-box modeling in system identification - a unified overview
- Jonas Sjöberg et al.
- Great starting point for those trying to identify parameters in unknown systems
- Broadly applicable
- Written for the user

Necessary background

- Systems ID can't be 'formalized, automated'
- Methods can be novel

Background continued

- Systems ID finds a relationship between input and output
- Must choose basis functions and parameters

Fig.ic

What the authors did

- Summarize the field of systems ID with a common approach
- Explain major choices systems identifiers will face
- Provide examples which help answer structural issues (of function choice)

General Approach

Inputs and Outputs

$$
\begin{aligned}
& u^{\prime}=\left[\begin{array}{llll}
u(1) & u(2) & \ldots & u(t)
\end{array}\right], \\
& y^{\prime}=\left[\begin{array}{llll}
y(1) & y(2) & \ldots & y(t)
\end{array}\right] .
\end{aligned}
$$

Looking for relationship

$$
y(t)=g\left(u^{t-1}, y^{t-1}\right)+v(t) .
$$

Approach continued

Relationship can be decomposed into parameters and function of past I/O

$$
g\left(u^{t-1}, y^{t-1}, \theta\right)=g(\varphi(t), \theta),
$$

where

$$
\varphi(t)=\varphi\left(u^{t-1}, y^{t-1}\right) .
$$

Function of past I/O pairs is regression vector

Approach continued

The mapping

$$
g(\varphi, \theta)
$$

which for any given θ goes from \mathbb{R}^{d} to \mathbb{R}^{p}.
Can be written as a sum (family) of basis functions

$$
g(\varphi, \theta)=\sum \alpha_{k} g_{k}(\varphi)
$$

Approach continued

Basis functions can be constructed from single 'mother basis function'

$$
g_{k}(\varphi)=\kappa\left(\varphi, \beta_{k}, \gamma_{k}\right) \quad '=\kappa\left(\beta_{k}\left(\varphi-\gamma_{k}\right)\right)^{\prime} .
$$

With scaling (directional) and offset terms determining region of support

Ex: $k(x)=\cos (x)$: Basis functions = Fourier

Basis function construction

Radial Construction

$$
g_{k}(\varphi)=g_{k}\left(\varphi, \beta_{k}, \gamma_{k}\right)=\kappa\left(\left\|\varphi-\gamma_{k}\right\|_{\beta_{k}}\right),
$$

Support diminishes by scale factor with distance from offset
The most homogeneous choice

Basis function construction (cntd)

Ridge Construction

$$
\begin{aligned}
g_{k}(\varphi) & =g_{k}\left(\varphi, \beta_{k}, \gamma_{k}\right) \\
& =\kappa\left(\beta_{k}^{\mathrm{T}} \varphi+\gamma_{k}\right), \quad \varphi \in \mathbb{R}^{d} .
\end{aligned}
$$

Unbounded support in subspace along 'ridge' of scaling (direction) function

- These basis functions can yield recognizable structures

Basis function construction (cntd)

Tensor Product of d (dimension) basis functions

$$
g_{1}\left(\varphi_{1}\right) \ldots g_{d}\left(\varphi_{d}\right)
$$

Can behave very differently in arbitrary directions
Computationally expensive for high-dimension case

Model Quality

True model

$$
y(t)=g_{0}(\varphi(t))+e(t)
$$

Quality

$$
\begin{aligned}
\bar{V}(\theta) & =E\|y(t)-g(\varphi(t), \theta)\|^{2} \\
& =\lambda+E\left\|g_{0}(\varphi(t))-g(\varphi(t), \theta)\right\|^{2}
\end{aligned}
$$

Model Quality and Variance

Best fit (\#parameters=m) minimizes variance

$$
\theta_{*}(m)=\arg \min _{\theta} \bar{V}(\theta)
$$

Quality of a specific model with N I/O pairs

$$
E \bar{V}\left(\hat{\theta}_{N}\right)=V_{*}(m) .
$$

Bias and Variance

Decompose deviation from true model

$$
\begin{aligned}
V_{*}(m)= & E \bar{V}\left(\hat{\theta}_{N}\right) \\
= & \lambda+E\left\|g_{0}(\varphi(t))-g\left(\varphi(t), \hat{\theta}_{N}\right)\right\|^{2} \\
\approx & \underbrace{\lambda}_{\text {noise }}+\underbrace{E\left\|g_{0}(\varphi)-g\left(\varphi, \theta_{*}(m)\right)\right\|^{2}}_{\text {bias }} \\
& +\underbrace{E\left\|g\left(\varphi, \theta_{*}(m)\right)-g\left(\varphi, \hat{\theta}_{N}\right)\right\|^{2}}_{\text {variance }} .
\end{aligned}
$$

What will help with bias?

Within a known model family:

- Increasing number of parameters will give better overall model quality
- Increasing number of basis functions will reduce variance $\hat{\theta}_{N} \rightarrow \theta_{*}(m)$

How will this affect variance in unknown model families with novel mother basis functions?

What will help with variance?

Variance is a function of \# of parameters and \# of regressor-output pairs (w/ error variance)

$$
E\left\|g\left(\varphi(t), \hat{\theta}_{N}\right)-g\left(\varphi(t), \theta_{*}(m)\right)\right\|^{2} \approx \lambda \frac{m}{N}
$$

Giving model quality succinctly

$$
\begin{aligned}
V_{*}(m)= & E \bar{V}\left(\hat{\theta}_{N}\right)=\lambda+\lambda \frac{m}{N} \\
& +E\left\|g_{0}(\varphi)-g\left(\varphi, \theta_{*}(m)\right)\right\|^{2} \\
= & \bar{V}\left(\theta_{*}(m)\right)+\lambda \frac{m}{N} .
\end{aligned}
$$

Advice

- Look at data
- Try and find physically intuitive explanation
- Pick efficient basis functions
- Do not add parameters 'spuriously'
- Do not add basis functions unless you are confident about the mother basis function
- Remember tradeoff between bias and variance

Significance of key result

- No new 'results'
- Significant due to comprehensive nature of paper - all described from a common framework
- Has great benefit for researchers in an array of fields - user focused

My assessment

- Important as a blueprint for Systems ID
- Only most general abstractions reviewed are applicable to RCM link parameter estimation
- Good
- Broad
- Written from users perspective
- Bad
- Not all applicable
- Desire to be broad leaves out many specific mathematical processes

Applicability

Suppose needle tip position in base coordinates is a function of 3 parameters: $\Theta 1$, Ө3+Y (offset), L

- Rotation about $Z \quad$ rbi $=\left(\begin{array}{ccc}\operatorname{Cos}[\operatorname{lo1} & -\sin [011 & 0 \\ \sin [01] & \cos [01] & 0 \\ 0 & 1 & 1\end{array}\right)$

- Idealized model: [xyz]=Rb1*R2t*[0;-L;0]

'Reality'

Accounting for additional parameter

- Rotation about $\mathrm{Y}_{\mathrm{R} 12}=\left(\begin{array}{ccc}\cos [\beta] & 0 & \sin [\beta] \\ -\sin [\beta] & 1 & \cos [\beta]\end{array}\right)$
- Resulting in a new model: [xyz] $=R b 1 * R 12 * R 2 t^{*}[0 ;-L ; 0]$

Next steps

- Future research in Systems ID should focus on expanding catalogue of basis functions
- This will move more problems from blackbox to grey-box, white-box
- Future reading for our project should focus on grey-box systems identification

Conclusions

- Great paper!
- Very useful to many people
- Needs some interpretation to apply
- Desire to be broad excludes specific path - Kind of like variance vs bias

SO,

- Questions?

