Comparative Tracking Error analysis of five different Optical tracking systems

Changhan Jun (Group 6)

<u>Outline</u>

- Intro to PAKCoR Project
- Background
- Introduction to Optical Tracking System
- Methodology
- Results
- Author's Conclusion
- My opinion
- Possible Future Step

Precise Automated Kinematic Calibration of RCM Robots

Main Goal: Quantify the error of RCM and develop more accurate RCM

Important Steps:

- Calibrating the accuracy of Polaris Optical Tracking System
- Quantify the error of RCM
- Develop a new and more accurate RCM

Background

Comparative Tracking Error Analysis of Five Different Optical Tracking Systems

Rasool Khadem, Ph.D., Clement C. Yeh, M.S., Mohammad Sadeghi-Tehrani, M.S., Michael R. Bax, M.S., Jeremy A. Johnson, M.S., Jacqueline Nerney Welch, M.S., Eric P. Wilkinson, B.S.E., and Ramin Shahidi, Ph.D. Image Guidance Laboratories, Stanford University School of Medicine, Stanford, California

- Precision Analysis using Jitter* measurement
- 5 different Optical Tracking Systems
- Tested in X-Y-Z axis
- Tested in all range of Digitizing Volume*

*Digitizing volume: a range of position inside of which the tracking apparatus is completely visible to the camera

*jitter: the undesired deviation from true periodicity of an assumed periodic data(wikipedia)

Introduction

• Optical Tracking Systems (OTS)

Consist of 1D or 2D image sensors and emitters

• 5 OTSs tested in this paper

System	Manufacturer			
300 mm FlashPoint	Image Guided Technology Inc. (IGT)			
580 mm FlashPoint	Image Guided Technology Inc.			
1 m FlashPoint	Image Guided Technology Inc.			
Polaris	Northern Digital Inc. (NDI)			
Polaris(passive)	Northern Digital Inc.			

Introduction

DRF:

Dynamic Reference Frame

Active Configuration

Emitters are mounted on the DRF

• Passive Configuration

Camera emits the Infrared light and DRF reflects the light

Introduction

DRF used

System	DRF
300 mm FlashPoint	3 LED 50 mm ACTIVE
580 mm FlashPoint	3 LED 50 mm ACTIVE
1 m FlashPoint	3 LED 50 mm ACTIVE
Polaris	4 LED Active TRAXTAL
Polaris(passive)	4 LED Passive TRAXTAL

LTA (Linear testing apparatus)

- Precision-machined
- 500 mm² plate with 10x10 grid of holes (X-Y axis)
- 700 mm linear track
 with 10mm shift
 (Z-axis)
 PAKCoR SEC | CISST

Digitizing Volume (Spec & Tested)

	Max X	Max X tested	Max Y	Max Y	Min Z	Min Z	Max Z	Max Z
Camera	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
300 mm Flashpoint	150	300	150	400	600	600	900	900
580 mm Flashpoint	500	430	500	650	1000	1060	2000	2160
1 m Flashpoint	500	800	500	650	1000	1060	2000	2160
Polaris	500	410	500	620	1400	1400	2400	2400
Polaris (passive)	500	350	500	620	1400	1400	2400	2400

- Tested moving the LTA Volume Unit in 3 dimensions
- 30 degree was chosen for viewing angle

- DRF was Mounted on X-Y 100 holes and 10cm shift in Z
- Camera was mounted on a tripod
- Orientations of camera and LTA were Aligned
- Tested in all range of digitizing volume

$J_{xyz} = \left\| [X_i \ Y_i \ Z_i]^T - [\mu_X \ \mu_Y \ \mu_Z]^T \right\|$

- Sampled 100 times, $(X_i \ Y_i \ Z_i)$ for $1 \le i \le 100$
- Jitter was calculated relative to the mean coordinates ($\mu_X \ \mu_Y \ \mu_Z$)
- J_X , J_Y , J_Z are the normalized standard deviation of each x, y, z
- *jitter: the undesired deviation from true periodicity of an assumed periodic data(wikipedia)

<u>Results</u>

Jitter in Z increases with increasing distance Z.

<u>Results</u>

• Maximum Jitter values

• For all,

NDI Polaris shows largest Jitter value.

• For Lowest 95%,

IGT OTSs and NDI OTSs are comparable

Author's Conclusion

- Jitter result data is dominated in Z axis
- Suggestions
 - ✓ OTS camera should be as close as possible
 - ✓ Z axis of Camera should be in direction that is least clinically significant
- Among 5 OTSs, IGT active systems were more predictable than NDI

My Opinion

Positive

- Tried 5 different OTSs
- X-Y-Z analysis
- Jitter measurement
- The ellipses method
- Tested all range

Negative

- Hard to believe the orientations are perfectly aligned
- Author did not consider the other static errors
- Only dealt with precision
- The LTA did not reflect the typical clinical use
- Correction Algorithm

Future Step

- Build the Accuracy Analysis methods
- Mathematic model and Correction algorithm
- Apparatus which can reflect the real use of tracking systems such as rotational or angular movements.

<u>Reference</u>

- Comparative Tracking Error Analysis of Five Different Optical Tracking Systems, Rassol Khadem, 2000
- Accuracy assessment and interpretation for optical tracking systems ,Andrew D. Wiles 2004

THANKS

