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Abstract 
 

The objective of this project is to develop a patient-specific mortality prediction model based on 

physiologic derangement during first 48h of an ICU stay. Under a probabilistic framework, the risk 

features are defined as log likelihood ratio, and aggregated by a logistic function to generate a 

probability score. The classification performance of the method is evaluated, contribution from each 

individual feature is analyzed, and finally, limitations and possible extensions of this study is discussed.  

 

 
Introduction 

 

The modern ICU is a complex, expensive and resource-intensive environment, admitted patients are 

usually under life-threatening conditions that require advanced medical care and invasive/noninvasive 

monitoring. The cost of care for an ICU patient is estimated to be three times the costs of a general 

patient [1]. Therefore, the primary focus of ICU is on patients whose extreme conditions can be reversed 

and who have good chances of surviving. Since adjusted mortality rate is a useful marker of ICU 

quality, tools that quickly and accurately make prediction of a patient’s mortality risk of great 

significance. It allows for better clinical decision-making by the physicians and helps control hospital 

expenses and manages medical resources. Various general acuity-scoring systems are used for patients 

with critical illness, and can be calibrated from admission status (age, reasons for admission, previous 

health status, and etc.), physiological variables, laboratory tests, organ dysfunction, as well as 

therapeutic intervention (nursing activities, the amount/types of care provided) [2-4].  

 

Motivation and Significance 
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Instead of focusing on the overall mortality rates in ICU, which vary across units and hospitals due to 

different patient cohorts and clinical context [5], the goal of our project is to predict patient-specific in-

hospital mortality/survival based on 5 general descriptors and 37 time-series physiological variables 

during the first 48 hours of an ICU stay. However, in many cases, a common difficulty from such high 

dimensional heterogeneous data is its irregular measurement in terms of time and frequency (the 

variables are measured from once 30 minutes to once several hours, and not all of them are taken for 

each individual), Figure 1 corresponds to multiple types of observations in the same patient. In our 

dataset, out of 4000 samples, only 28 of them have at least one observation for all variables. Moreover, 

the real-world processes produce series of measureable observations (physiological profiles) as a 

function of underlying hidden states (latent disease states), the measurement is noisy and 

 
Figure 1. Multiple types of variables measured in the same patient, x-axis: time, y-axis: value 

 

Correlated, e.g. pH should go down as the PaCO2 rises, and the HCO3 should rise as the PaCO2 rises in 

order to bring the pH back to normal, SysABP (Invasive systolic arterial blood pressure) and NISysABP 
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(Non-invasive systolic arterial blood pressure) both measure the systolic arterial blood pressure, but 

using different techniques. PCA (principal component analysis) is a commonly used method to identify 

the most representative variations, which is a linear combination of original variables, and we observe 

several highly correlated variables, e.g. PaCO2 and PaO2, NISysABP and SysABP, as is shown in 

Figure 2. For the task of outcome prediction, majority of existing scoring systems are based on such 

supervised algorithms as logistic regression or artificial neural networks. Since neural network is 

unstable to different parameter settings (e.g. the number of hidden nodes, decay factor) in our study, we 

only focus on logistic regression.   

 

 
Figure 2. Principle component analysis, each red point corresponds to all records associated with a patient, PC1~PC9 

is shown, which accounts for 95% of the total variations.  

 

Technical Approach 
 

 
Figure 3. Graphical illustration of logistic regression models 
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The logistic function models how the probability of an event Y is affected by multiple explanatory 

variables, x1,...,xn{ } . Although the event is binary, its probability is a latent variable that generates the 

observed outcome, e.g. survive/die [6, 7].  

 

The probability of ‘death’ given original variables ( X ) can be written as a logistic sigmoid acting on the 

linear combination of the feature vector φ = φ X( )  so that  

 P death | x1,...,xM{ }( ) =σ −wTφ( ) = 1
1+ exp −wTφ( ) , 

Where φ ⋅( )  is the basis function that transforms original variables X  into feature vectors, 

w = w0,w1,...,wM( )T is model parameter, M +1  and is the total number of features? w  Is solved via 

minimizing the error function, L2 regularization term λ w2
i

i
∑  is introduced, the result is not affected 

with λ  ranges from 1.2~1.5.  

 

We use a probabilistic framework to define the basis function, φ , which is primarily based on 

previously developed nonlinear model of risk factors [8]. There’re several assumptions of this 

transformation: 1) The true probability distribution, Pi
death or Pi

survive , of each original variable, xi , in 

each class of patients can be approximated by one of five long-tail parametric distributions (normal, 

gamma, exponential, weibull and lognormal) using maximum likelihood estimation, each variable has 

multiple observations, oi1,...,oiT{ } , within 48 hours—which means the underlying distribution, Pi
death , is 

invariant over time. 2) The number of observations, Ti , follows Poisson distribution, and is independent 

of the values taken by the observations. 3) If a measurement is completely missing in one patient, Ti = 0

, it’s assumed P Ti = 0 | death( )  equals EData 1 Ti = 0{ } | death⎡⎣ ⎤⎦  
the expectation of such event in the 

‘death’ patient population.  

φ xi( ) =
log

P xi | death( )
P xi | survive( ) , log

P Ti | death( )
P Ti | survive( )

log
P Ti = 0 | death( )
P Ti = 0 | survive( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪
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Where log
P xi | death( )
P xi | survive( ) = log

P oit | death( )
P oit | survive( )t=1

T

∑
 

and oi1,...,oiT{ }  is the set of observations for a 

variable xi .  

 

Ten-fold cross validation is used to evaluate classification performance. 90% samples are used to fit 

distributions and learn model parameters, while 10% held-out samples are used to evaluate predictive 

accuracy of the classifier. The ROC (Receiver operating characteristic) curve plotted true positive rate 

(TPR) vs. the false positive rate (FPR) as the cutoff threshold changes, which indicates the accuracy of 

the prediction method at various cutoff thresholds used to discriminate survive vs. death. The AUC 

(Area Under the Curve) is equal to the probability that the classifier assigns a higher score for a 

randomly selected positive instance than that for a randomly selected negative one [9].  

 
Results  

 

Classification evaluation 

The left figure shows the ROC curve and associated area under the curve values for our method (10-fold 

cross-validation) and SAPS-I and SOAP (based on all available samples). The overall classification 

performance of our method (AUC=0.801) is better than SAPS-I (AUC=0.638) and SOAP (AUC=0.628). 

The mortality rate in our data is 554/4000≈0.138, but a threshold of 0.05 achieves a sensitivity of 0.945 

and specificity of 0.351 (marked out by an arrow in Figure 4). Since sensitivity = TP
TP + FN

 and 

specificity = TN
FP +TN

, this means if we predict patients with P death( ) > 0.05  to die and those with 

P death( ) < 0.05  to survive, we correctly identify 94.5% patients that died and 35.1% patients that 

survived. Alternatively, threshold of 0.5 (marked out by an arrow in Figure 4) that assigns patients with 

P death( ) > 0.5  to die, and those with P death( ) < 0.5  to survive correctly identify 98.0% patients that 

survived but only 23.6% patients that died. The use of lower threshold improves sensitivity at the price 

of specificity, falsely rejecting some of the patients whose life-threatening conditions could have been 

reversed with intensive care, while the higher threshold increases specificity at the price of sensitivity, 
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falsely accepting some of the patients that won’t have good chance of survive even with advanced 

treatment.  

 
Figure 4. Left: classification performance evaluation using ROC and associated AUC. Right: Hosmer–Lemeshow 

statistics. 

 

Goodness of fit 

 

The right figure plotted the Hosmer–Lemeshow statistics [7], which tests for goodness of fit for logistic 

regression [10]. The population is discretized into several subgroups based on the predicted risk, and the 

test assesses whether the observed number of events match the expected number of events in different 

risk deciles,  

H =
Od − Ed( )2

Ndπ d 1−π d( )d=1

D

∑ , 

Where Od , Ed , Nd  and π d  correspond to the observed events, expected evens, observations and 

predicted risk for the dth  risk deciles (D=10). The test statistic follows asymptotically the chi-squired 

distribution, with D − 2  degree of freedom, while an ideal and unattainable score is 0, which 

corresponds to 0 cumulative probability, our H statistics equals 3.10, corresponds to 0.0719 cumulative 

probability, the maximum accepted H statistics for this model is 15.507, corresponds to 0.95 cumulative 

probability.  
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Non-linear transformation of risk factors 

 

The basis function φ ⋅( )  defined previously is the log-likelihood ratio of two statistical models, which 

expresses how many times more likely the set of observations oi1,...,oiT{ }  are under one model (‘death’) 

than the other (‘survive’). The model specifies both the family of distribution (one of five long-tail 

distributions for the observed values and Poisson distribution for the number of observations) and the 

parameters that maximize the observation likelihood.  

 

The logistic classifier consists of 24 time-series variables and 2 general descriptors (Table 1), the 

unselected variables are either missing in majority of the patients or highly correlated with the already 

selected variables (e.g. NIMAP and MAP, NISysABP and SysABP). Besides examining the learned 

weights w  of features (Table 1), representing relative contribution from both the values and the number 

of observations for each physiological variable to the observed outcome, the Bayesian modeling enables 

the nonlinear transformation from values of physiological parameters to the posterior probability of 

outcome (e.g. from P xi | death( )  to P death | xi( ) ), visualization of such transformation is shown in 

Figure 5 (only for values of observations), 

P death | xi( ) = P xi | death( ) ⋅P death( )
P xi | death( ) ⋅P death( ) + P xi | survive( ) ⋅P survive( )   
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Figure 5. the nonlinear transformation from values of physiological parameters to the posterior probability of death 

 

vname weight_value weight_count 

'DiasABP' 0.11 -0.24 
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'HCT' 0.06 -0.01 

'Platelets' 0.17 -0.27 

'WBC' 0.13 0.09 

'Glucose' -0.01 0.35 

'Na' 0.01 0.36 

'K' 0.06 0.03 

'Mg' 0.06 -0.05 

'PaCO2' 0.02 -0.11 

'PaO2' 0.12 -0.08 

'ALP' 0.06 -0.05 

'ALT' -0.05 0.42 

'AST' 0.09 0.14 

'Bilirubin' 0.21 -0.49 

'BUN' 0.40 -0.06 
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'RespRate' 0.19 0.18 

'HCO3' 0.10 -0.65 

'FiO2' 0.19 -0.10 

'Temp' 0.30 0.20 

GCS -0.78* 0.13 

Age 0.19* - 

Weight -0.18* - 
Table 1. Parameter weights for logistic regression, *: using average value 

 

Discussion and Conclusion 
 

The observed physiological signals and their dynamics over time are affected by many factors, from the 

intrinsic state of disease, the setup of the monitoring instruments, to the medical interventions received 

by the patients [11, 12]. Most importantly, our data is a mixture of different patient cohorts, having 

different baseline characteristics, but detailed information regarding their origins is not available. Also, 

the disease state manifests itself through physiology, which is measured by various digital equipment, 

and our observations are, again, a mixture of all these confounding variables. However, the logistic 

model only adopts the strongest assumption (Figure 3): there’s only one latent variable Y controlling the 

patient’s binary outcome, all the physiological variables are independent and directly affect the outcome, 

and the model remains exactly the same over time and across patients. Further investigation can be 

related to eliminate some of the assumptions and generalize the model.  

 

Metrics for scoring the critically ill have several purposes: 1) patient outcome prediction, 2) measure 

disease severity, 3) resource management, 4) ICU performance assessment in different cohorts [13, 14]. 

Due to limited information in the data, our study only modeled the impact of physiological status to the 

patient-specific observed outcome, and such intrinsic genetic factors usually change slowly over decades 

or even centuries. However, outcome-predicting model in terms of accuracy is also strongly affected by 

population characteristics and healthcare delivery systems, which is changing continuously and become 

more and more important, justifying the need to ‘reinvent the wheel’ from time to time. Given the 

diversity and complexity of medical interventions we can offer today, the physiological impact is 

actually much lower compared with what it used to be in the past, justifying the definition of ‘death’ as 

those whose extreme conditions cannot be reversed. Moreover, in terms of pragmatic usage, prediction 
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models differ in the number and types of variables required have different data collection burden [15]. 

All of the above points are worth further investigation in the future.  

 

Management Summary 
 

Project Timeline 

 
 

Project Deliverables 

Minimum (Done) 

	

-- Logistic regression with log likelihood ratios as risk features 

	

-- Performance evaluation: ROC, AUC 

Expected  

	

-- Feature analysis (Done) 

	

-- Try features constructed from standard HMM, Kalman Filter (Hold on due to limitations of the data 

itself) 

	

-- Incorporate dependencies between observations (Substitute with PCA) 
Maximum 

	

-- Optimize features to achieve better classification performance (Done) 

	

-- Documentation (Done) 

	

-- partial AUC (Substitute with ROC threshold analysis) 

 
All work is implemented in MATLAB. 	

 

 

Week$1 Week$2 Week$3$ Week$4 Week$5 Week$6 Week$7 Week$8 Week$9 Week$10 Week$11 Week$12 Week$13
reading(list
project(plan
preprocessing(data
Features(as(Log(
likelihood(ratio
Logistic(regression
AUC(and(ROC
Feature(Analysis done
Time(dependencies(
between(observations
Features(from(hidden(
states
Model(optimization

partial(AUC

Documentation

Milestone(4(
(By(5/8)

Timeline

done

Substitute(with(
ROC(threshold(

analysis

done
done

done

done

Substitute(with(PCA
Hold(on(due(to(limitations(

of(the(data(itself

Milestone(1(
(By(2/23)

Milestone(2(
(By(3/26)

Milestone(3(
(By(5/1)



	
   11	
  

Acknowledgements 

 
Thanks to Dr. Jim Fackler and Dr. Harold Lehmann for their clinical insights, and thanks to Dr. Suchi 

Saria for her guidance in methodology.  

 

Reference 

 
1. Cooper LM, WT L-Z: Medicare intensive care unit use: analysis of incidence, cost, and 

payment. Crit Care Med 2004, 32:2247-2253. 

2. Zimmerman JE, Kramer AA, McNair DS, FM M: Acute Physiology and Chronic Health 

Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. 

Crit Care Med 2006, 34:1297-1310. 

3. Timsit JF, Fosse JP, Troche G, De Lassence A, Alberti C G-O, Bornstain C, Adrie C, Cheval C, 

S C: Calibration and discrimination by daily Logistic Organ Dysfunction scoring 

comparatively with daily Sequential Organ Failure Assessment scoring for predicting 
hospital mortality in critically ill patients. Crit Care Med 2002, 30:2003-2013. 

4. Padilha KG, de Sousa RM, Queijo AF, Mendes AM, MD R: Nursing Activities Score in the 
intensive care unit: analysis of the related factors. Intensive Crit Care Nurs 2008, 24:197-204. 

5. Glance LG, Osler T, T S: Effect of varying the case mix on the standardized mortality ratio 

and W statistic: A simulation study. Chest 2000, 117:1112-1117. 

6. http://en.wikipedia.org/wiki/Logistic_regression. 

7. David W. Hosmer, Lemeshow, S: Applied Logistic Regression, Second Edition. Wiley Series 

in Probability and Statistics Texts and References Section 2005. 

8. Saria S, Rajani AK, Gould J, Koller D, Penn AA.: Integration of early physiological responses 

predicts later illness severity in preterm infants. Sci Transl Med 2010, 2(48):48ra65. 

9. Fawcett, Tom: An introduction to ROC analysis. Pattern Recognition Letters 2006, 27:861–

874. 

10. http://en.wikipedia.org/wiki/Hosmer%E2%80%93Lemeshow_test. 

11. S. Saria, D. Koller, Penn A: Learning individual and population level traits from Clinical 

Temporal data. Neural Information Processing Systems, Predictive Models in Personalized 

Medicine workshop 2010. 



	
   12	
  

12. John A. Quinn, Christopher K.I. Williams, Neil McIntosh: Factorial Switching Linear 

Dynamical Systems applied to Physiological Condition Monitoring. IEEE Transactions on 

Pattern Analysis and Machine Intelligence 2009, 31(9):1537-1551. 

13. Vincent JL, Moreno R.: Clinical review: scoring systems in the critically ill. Crit Care 2010, 

14(2):207. 

14. Metnitz PG, Moreno RP, Almeida E, Jordan B, Bauer P CR, Iapichino G, Edbrooke D, Capuzzo 

M, Le Gall JR; SAPS 3 Investigators.: SAPS 3--From evaluation of the patient to evaluation 
of the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive 

Care Med 2005, 31(10):1336-1344. 

15. Kuzniewicz MW, Vasilevskis EE, Lane R DM, Trivedi NG, Rennie DJ CT, Kotler PL, Dudley 

RA: Variation in ICU risk-adjusted mortality: impact of methods of assessment and 

potential confounders. Chest 2008, 133(6):1319-1327. 

 

Appendix 

 
1. Overview of original variables: 

	
  
 

2. Percent of variance explained by each principle components  

• Albumin!(g/dL)!!
• ALP![Alkaline!phosphatase!(IU/L)]!!
• ALT![Alanine!transaminase!(IU/L)]!!
• AST![Aspartate!transaminase!(IU/L)]!!
• Bilirubin!(mg/dL)!!
• BUN![Blood!urea!nitrogen!(mg/dL)]!!
• Cholesterol!(mg/dL)!!
• Creatinine![Serum!creatinine!(mg/dL)]!!
• DiasABP![Invasive!diastolic!arterial!

blood!pressure!(mmHg)]!!

• FiO2![Fractional!inspired!O2!(0E1)]!!
• GCS![Glasgow!Coma!Score!(3E15)]!!
• Glucose![Serum!glucose!(mg/dL)]!!
• HCO3![Serum!bicarbonate!(mmol/L)]! 

• HCT![Hematocrit!(%)]!!
• HR![Heart!rate!(bpm)]!!
• K![Serum!potassium!(mEq/L)]!!
• Lactate!(mmol/L)!!
• Mg![Serum!magnesium!(mmol/L)]!!
• MAP![Invasive!mean!arterial!blood!pressure!

(mmHg)]!!

• MechVent![Mechanical!ventilation!
respiration!(0:false,!or!1:true)]!!

• Na![Serum!sodium!(mEq/L)]!!
• NIDiasABP![NonEinvasive!diastolic!arterial!

blood!pressure!(mmHg)]!!

• NIMAP![NonEinvasive!mean!arterial!blood!
pressure!(mmHg)]!!

• NISysABP![NonEinvasive!systolic!arterial!
blood!pressure!(mmHg)]! 

• PaCO2![partial!pressure!of!arterial!
CO2!(mmHg)]!!

• PaO2![Partial!pressure!of!arterial!O2!
(mmHg)]!!

• pH![Arterial!pH!(0E14)]!!
• Platelets!(cells/nL)!!
• RespRate![Respiration!rate!(bpm)]!!
• SaO2![O2!saturation!in!hemoglobin!

(%)]!!

• SysABP![Invasive!systolic!arterial!
blood!pressure!(mmHg)]!!

• Temp![Temperature!(°C)]!!
• TropI![TroponinEI!(μg/L)]!!
• TropT![TroponinET!(μg/L)]!!
• Urine![Urine!output!(mL)]!!
• WBC![White!blood!cell!count!

(cells/nL)]!!

• Weight!(kg)*! 

!
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3. Waiting time until death (left figure) or discharge (right figure) 
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 4. Maximum likelihood estimation of parametric distributions for each selected variable 

	
  

vname	
   Mortality	
   param1.M	
   param2.M	
   Survival	
   param1.S	
   param2.S	
   poisson.M	
   poisson.S	
  

'DiasABP'	
   'logn'	
   4.06	
   0.22	
   'logn'	
   4.07	
   0.21	
   40.22	
   36.20	
  

'NISysABP'	
   'logn'	
   4.73	
   0.21	
   'gam'	
   28.78	
   4.15	
   24.14	
   24.39	
  

'HR'	
   'gam'	
   19.25	
   4.71	
   'gam'	
   23.93	
   3.63	
   59.92	
   56.74	
  

'Lactate'	
   'logn'	
   1.12	
   0.79	
   'logn'	
   0.74	
   0.61	
   3.26	
   2.03	
  

'NIMAP'	
   'gam'	
   20.83	
   3.55	
   'gam'	
   25.94	
   2.99	
   23.87	
   24.01	
  

'HCT'	
   'gam'	
   35.02	
   0.88	
   'gam'	
   38.25	
   0.80	
   4.68	
   4.58	
  

'Platelets'	
   'gam'	
   2.48	
   70.05	
   'gam'	
   3.80	
   50.63	
   3.83	
   3.51	
  

'WBC'	
   'gam'	
   2.27	
   6.19	
   'gam'	
   4.11	
   3.01	
   3.55	
   3.21	
  

'Glucose'	
   'logn'	
   4.93	
   0.41	
   'logn'	
   4.87	
   0.36	
   3.96	
   3.20	
  

'Na'	
   'logn'	
   4.94	
   0.04	
   'norm'	
   139.08	
   5.05	
   4.14	
   3.30	
  

'K'	
   'logn'	
   1.42	
   0.17	
   'logn'	
   1.40	
   0.15	
   4.33	
   3.54	
  

'Mg'	
   'logn'	
   0.71	
   0.20	
   'logn'	
   0.68	
   0.20	
   3.91	
   3.38	
  

'PaCO2'	
   'logn'	
   3.62	
   0.25	
   'logn'	
   3.69	
   0.21	
   6.94	
   5.83	
  

'PaO2'	
   'logn'	
   4.78	
   0.49	
   'logn'	
   4.89	
   0.51	
   6.94	
   5.83	
  

'ALP'	
   'logn'	
   4.67	
   0.70	
   'logn'	
   4.45	
   0.62	
   1.45	
   0.93	
  

'ALT'	
   'logn'	
   4.54	
   1.71	
   'logn'	
   4.12	
   1.60	
   1.50	
   0.95	
  

'AST'	
   'logn'	
   5.00	
   1.70	
   'logn'	
   4.45	
   1.49	
   1.50	
   0.95	
  

'Bilirubin'	
   'logn'	
   0.62	
   1.49	
   'logn'	
   -­‐0.01	
   1.11	
   1.49	
   0.95	
  

'BUN'	
   'logn'	
   3.40	
   0.71	
   'logn'	
   2.97	
   0.71	
   4.01	
   3.41	
  

'RespRate'	
   'gam'	
   11.79	
   1.82	
   'gam'	
   13.74	
   1.42	
   8.22	
   14.52	
  

'HCO3'	
   'norm'	
   21.54	
   5.48	
   'norm'	
   23.43	
   4.42	
   3.96	
   3.33	
  

'FiO2'	
   'logn'	
   -­‐0.63	
   0.31	
   'logn'	
   -­‐0.66	
   0.30	
   10.80	
   7.73	
  

'Temp'	
   'norm'	
   36.92	
   1.13	
   'wbl'	
   37.47	
   42.58	
   19.89	
   22.12	
  

GCS	
   NA	
   NA	
   NA	
   NA	
   NA	
   NA	
   16.15	
   15.32	
  


