Mortality assessment in ICU with multivariate physiological time-series

2/21/12 Danning He, DHSI, JHSOM Mentor: Jim Fackler, Harold Lehmann

Outline

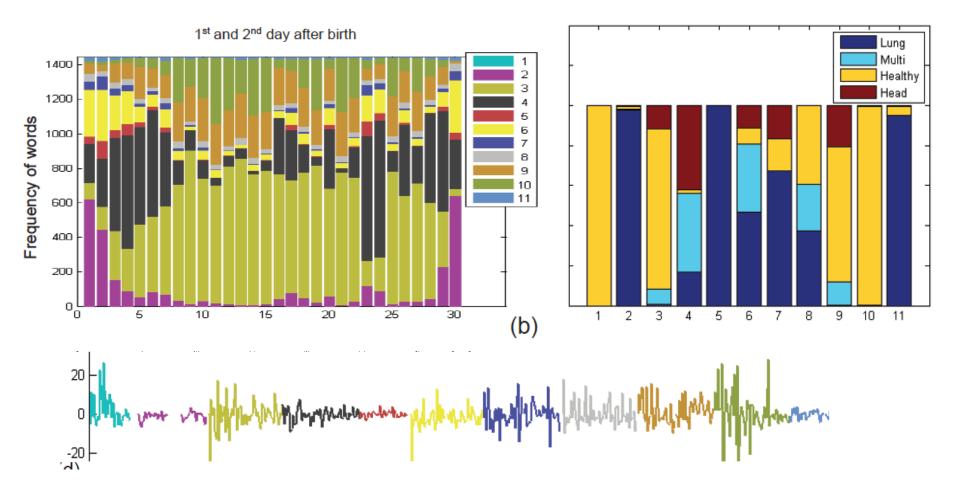
- Project summary
- Background
- Technical Approach
- Deliverables
- Timeline
- Management Plan
- Reading List

Project Summary

- The ICU is a complex, expensive and data-intensive environment. Tools that automatically interpret patterns in the data are crucial for clinical decision-making.
- The goal is to develop mortality models that predicts inhospital death based on multiple clinical temporal data during the first two days of an ICU stay.

Supervised learning: Classical scoring system

- APACHE: Acute Physiology and Chronic Health Evaluation
- SAPS: Simplified Acute Physiology Score
- MPM: Mortality Probability Models (MPM0, MPM24)
- SOFA: Sequential Organ Failure Assessment score
- Many others.


haracteristics	APACHE [3]	SAPS [10]	APACHE II [4]	MPM ^a [14]	APACHE III [5]	SAPS II [11]	MPM II ^b [15]	SAPS 3 [12]	APACHE IV [8]	MPM III [17]		
'ear	1981	1984	1985	1985	1991	1993	1993	2005	2006	2007		
Countries	1	1	1	1	1	12	12	35	1	1		
CUs	2	8	13	1	40	137	140	303	104	135		
atients	705	679	5,815	2,783	17,440	12,997	19,124	16,784	110,558	124,855		
election of ariables and neir weights	Panel of experts	Panel of experts	Panel of experts	Multiple logistic regression	Multiple logistic regression	Multiple logistic regression	Multiple logistic regression	Multiple logistic regression	Multiple logistic regression	Multiple logistic regression		
ariables												
Age	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Origin	No	No	No	No	Yes	No	No	Yes	Yes	No		
Surgical statu	s No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Chronic health status	Table	2. Compa	rison of t	hree orga	an dysfun	ction sco	res					
Physiology	Characteristics				LODS [29]			MODS [30]			SOFA [31]	
Acute diagno	Year of publication				1996			1995			1996	
umber of variab :ore	Selectio	n of variable	es and their v	veights	Multiple logistic regression			Literature review and logistic regression			Panel of experts	
ortality prediction												
^a These models are (MPM ₀ II). ^c MPM ₂₄ I		urologic	<u> </u>		Glasgow Coma Scale			Glasgow Coma Scale			Glasgow Coma Scale	
core; MPM, Morta	Cardiovascular				Heart rate, systolic blood pressure			Pressure-adjusted heart rate			Mean arterial blood pressure, vasopressor use	
	Renal				Serum urea or urea nitrogen, creatinine, urine output			Serum creatinine			Serum creatinine, urine outpu	
	Respiratory Hematologic			PaO_/FiO_ ratio, mechanical ventilation			PaO_2/FiO_2 ratio			PaO _z /FiO _z ratio, mechanical ventilation		
					White blood cell count, platelet count			count		Platelet count		
	Hepatic				Serum bilirubin, prothrombin time			Serum bilirubin			Serum bilirubin	

Vincent JL and Moreno R. (2010). "Clinical review: scoring systems in the critically ill." Crit Care. 14(2): 207.

Unsupervised learning: State-space

- Real-world processes produce series of measureable observations as a function of underlying hidden states.
- Similar to clinical diagnosis, which is inferred from several observations with significant degree of uncertainty, generation of multivariate physiologic profiles by latent disease status or signatures can help reveal the manifestation of disease.

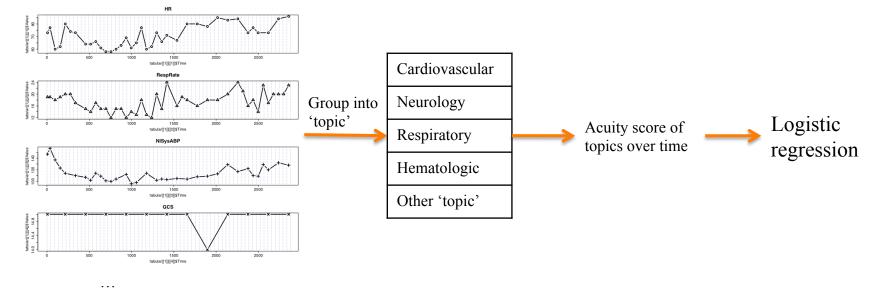
Latent states in univariate and continuous clinical time-series

Saria S, Koller D, et al. (2010). "Learning individual and population level traits from Clinical Temporal data." <u>Neural</u> <u>Information Processing Systems.</u>

Interest in Translational Medicine

• <u>BMC Genomics.</u> 2011 Dec 2;12:592.

Identification of dysfunctional modules and disease genes in congenital heart disease by a network-based approach.


Danning He, Zhi-Ping Liu, Luonan Chen¹

• <u>JMCB</u>. Accepted

Coexpression network analysis in chronic hepatitis B and C hepatic lesion reveals distinct patterns of disease progression to hepatocellular carcinoma

Danning He^{1,2,†}, Zhi-Ping Liu^{1,†,*}, Masao Honda³, Shuichi Kaneko³ and Luonan Chen^{1,*}

Technical Approach: General framework

37 time-series

Technical approach: Logistic regression model

 For two-class classification, the probability of class 'mortality' (C1) given original variables (X) can be written as a logistic sigmoid acting on the linear combination of the feature vector φ = φ(X) so that

•
$$p(C_1 | X) = \sigma(-\mathbf{w}^T \phi) = \frac{1}{1 + \exp(-\mathbf{w}^T \phi)}$$

where \(\ell\) is the basis function that transforms original variables into feature vectors.

Technical approach: multivariate, discrete, irregular measurement

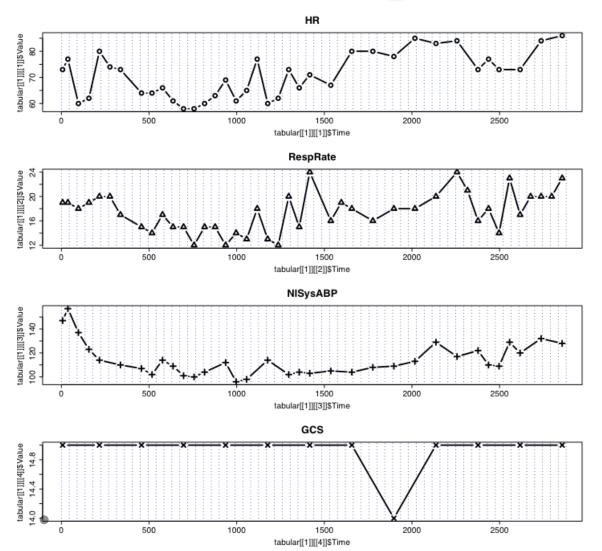
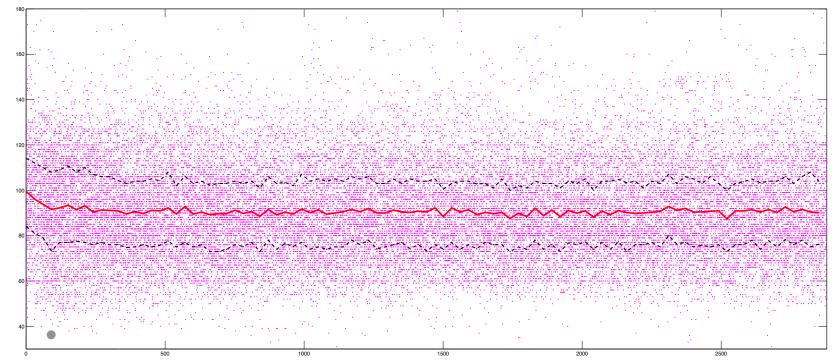
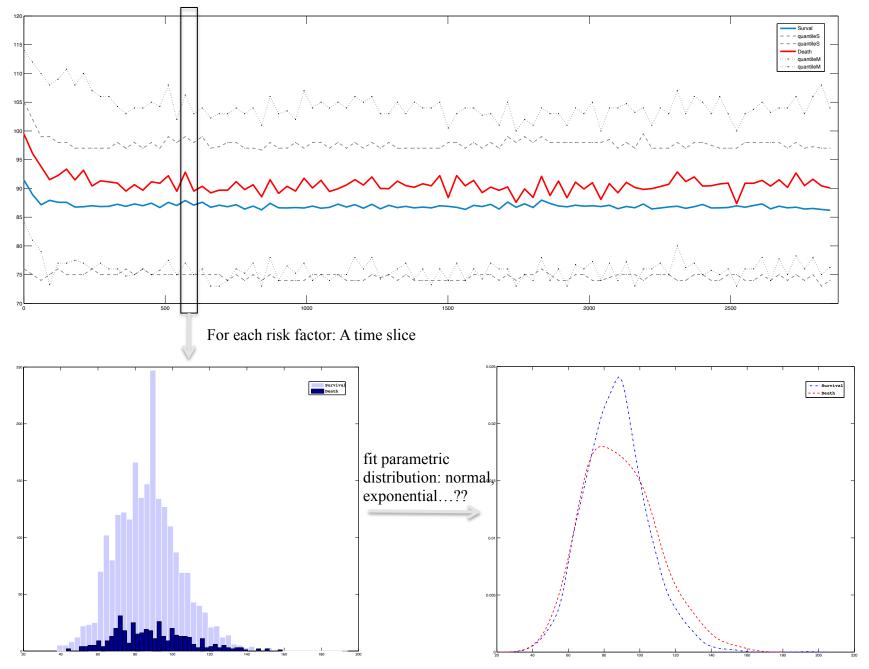
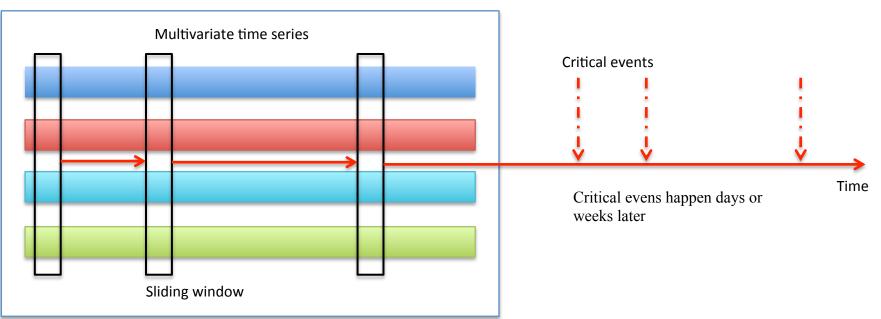


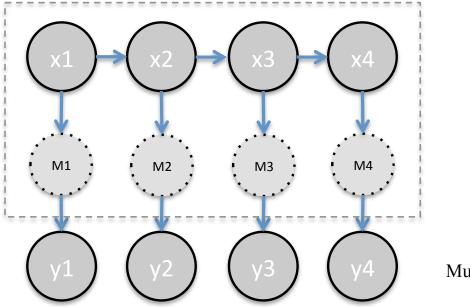
Figure 1. y-axis: value, x-axis: time


- <u>*HR*</u> [Heart rate (bpm)]
- <u>RespRate</u> [Respiration rate (bpm)]
- <u>NISysABP</u> [Non-invasive systolic arterial blood pressure (mmHg)]
- <u>GCS</u> [Glasgow Coma Score (3-15)]


Technical approach: population characteristics

Heart Rate: One individual


Heart Rate: Population



Technical Approach: feature as log odds ratio of risk factors

$$\phi_{it} = \log\left(\frac{p(v_{it} \mid C_1)}{p(v_{it} \mid C_2)}\right)$$

Technical Approach: Feature as hidden states?

Multivariate observations

Deliverables

- Minimum
- -- Logistic regression with log odds ratios as risk features
- -- Performance evaluation: ROC, AUC
- Expected
- -- Minimum deliverables
- -- Incorporating waiting time until the critical events
- -- Try features constructed from standard HMM, Kalman Filter

Maximum

- -- Expected deliverables
- -- Optimize features to achieve better classification performance

Management Plan

- Regular weekly meeting/consult with Dr. Fackler or Dr. Lehmann
- Frequent consult with related experts when necessary
- Update wiki pages regularly at weekends, documentation of the work done in the past week and the work that will be done in the following week
- Report progress regularly to Dr. Fackler and Dr. Lehmann

Timeline

Timeline		week 1	week 2	week 3	week 4	week 5	week 6	week 7	week 8	week 9	week 10	week 11	week 12
Milestone 1	reading list												
	project plan												
	preprocessing												
	data												
Milestone 2 (Minimum)	Features as log odds ratio												
	Logistic regression												
	AUC and ROC												
Milestone 3 (Expected)	try HMM												
	try Kalman Filter												
	Optimization												
Milestone 4	Model												
	comparison												
	Project report												

Reading List

- 1. Saria S, Koller D, Penn AA. (2010) Learning individual and population level traits from Clinical Temporal data. Neural Information Processing Systems.
- 2. Imhoff M, Kuhls S. (2006) Alarm algorithms in critical care monitoring. Anesth Analg 102: 1525-1537.
- 3. Zimmerman JE, Kramer AA, McNair DS, Malila FM. (2006) Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Crit Care Med 34: 1297-1310.
- 4. Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. (2001) Serial Evaluation of the SOFA Score to Predict Outcome in Critically III Patients. JAMA 286: 1754-1758.
- 5. Silva A, Cortez P, Santos MF, Gomes L, Neves J. (2006) Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif Intell Med 36: 223-234.
- 6. Hug CW, Szolovits P. (2009) ICU Acuity: Real-time Models versus Daily Models. AMIA Annu Symp Proc: 260-264.
- 7. Saria S, Rajani AK, Gould J, Koller D, Penn AA. (2010) Integration of Early Physiological Responses Predicts Later Illness Severity in Preterm Infants. Sci Transl Med 2: 48ra65.

Thank you for your attention.