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1. Project Summary 

 

The modern ICU is a complex, expensive and data-intensive environments, acuity assessment of the patients are based on multiple 

temporal observations and trends produced by various monitoring systems and laboratory tests. Tools that quickly and automatically 

interpret patterns in the data can greatly facilitate the clinical decision-making by physicians and healthcare givers.  

 

The goal of this project is to develop methods for patient-specific prediction of in-hospital morality/survival based on 5 general descriptors 

collected on admission and 37 time-series physiological variables during the first 48 hours of an ICU stay.  

 
2. Background Overview 

 

I) Physiological time series 

 

There’s rich content in time series modeling using either the time domain approach to predict future value of a series as a parametric 

function of current and past observations, or the frequency domain approach to characterize periodic variations of interest. Real-world 

processes produce series of measureable observations as a function of underlying hidden states. Similar to clinical diagnosis, which is 

inferred from several observations with significant degree of uncertainty, generation of multivariate physiologic profiles by latent disease 

status or signatures can help reveal the manifestation of disease. For the task of feature discovery or latent signature detection in univariate, 

continuous time series, various unsupervised learning approaches are available [1,2], with the underlying assumption that there’s a fixed set 

of disease topics common to the collection of time series (such as physiologic heart rate, HR) distributed among patient samples. And the 

disease topic is again a distribution over the vocabulary of all ‘words’ in the corpus. The topic proportions can be used as features for 

explanatory grading task. However, in many cases, a common difficulty from multivariate physiological data is its irregular measurement 

in terms of time and frequency from patient to patient (the variables are measured from once 30 minutes to once several hours, and not all 

of them are taken for each individual). Figure 1 show 4 out of 37 physiological variables extracted from a patient in the data set. Therefore, 

for the task of outcome prediction in ICU, majority of existing acuity models and severity scoring systems are based on such supervised 

algorithms as logistic regression or artificial neural networks, trained with static variables on admission [3], sequential assessment of organ 

dysfunctions [4], daily adverse events [5], 24h acuity score [6] and log odds ratio [7].  

 



 
 

II) Logistic regression model 

To solve the problem of two-class classification, the probability of class ‘mortality’ ( ) given original variables ( X ) can be written as a 

logistic sigmoid acting on the linear combination of the feature vector φ = φ X( )  so that  

 p C1 | X( ) =σ −wTφ( ) = 1
1+ exp −wTφ( ) , 

where φ ⋅( )  is the basis function that transforms original variables X  into feature vectors, w = w1,w2,...,wM( )T is model parameter, 

M  is the total number of features. w  is solved via minimizing the error function or maximizing the likelihood function.	  	  

	  

3. Technical approach 

 

I) General framework 

The 37 time series (although only 1/3 variables have more than 10 measurements within the first 48 hour) can be roughly grouped into 
several relatively independent topics: Neurologic (such as the GCS), Cardiovascular (such as Heart Rate, systolic blood pressure), 
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Respiratory (such as O2 and CO2), Hematologic (such as WBC) and etc. And it’s possible to use PCA (principal component analysis) to 
identify the most representative variations over time, which is a linear combination of several correlated observations within a topic. The 1st 
principal component from each topic will be used to construct predictive features. In later work, the topics can also be conceptualized as a 
fixed set of hidden variables, which control what we’ve observed.  
 

	  
 

II) Log odds ratio as risk features 

Although for each patient, physiological variables are recorded rather sparsely (Figure 1), given large sample size (~4000), the population 

behaves in a nearly continuous manner (Figure 2, solid red line represent population mean at a time slice, dashed black line represent 75% 

and 25% quantile at that time slice. Therefore, we get a time-dependent ‘envelope’ for this particular physiological variable).  

 
 

At each time slice, we can fit the distribution of observed values with parametric models in case and control separately (Figure 3), and get 

the log odds ratio defined as log
p vi |C1( )
p vi |C2( )
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The above figures are just for illustrative purpose. In fact from the bottom right figure, there’s not significant difference in case vs. control 

at this randomly selected time slice. In real work, it’s the 1st principal component from each topic that will be used to construct features.  

 

III) Discussion 

At each time slice ti , we observe a vector of observations oti . When the sliding window moves along the dimension of time, we have a 

sequence of observations O j  for patient j . A useful underlying assumption is that the observed physiological measurements were 

governed by hidden states, which evolve smoothly or jump over time. Another intriguing fact to consider is that critical events happens 

days or weeks after 48 hours’ of observation. Associating the waiting time until critical events with patient outcome add to the practical 

usefulness the model. Approaches for this part will depend on the result from previous steps, and will be updated when progress is made. 

We’ve used the intuitive log odds ratio as predictive features, so a possible direction would be to consider the overall proportion of hidden 

states or the distribution of hidden states over time as predictive features. 
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4. Deliverables 

Minimum 

 -- Logistic regression with log odds ratios as risk features 

 -- Performance evaluation: ROC, AUC 

 Expected 

 -- Minimum deliverables 

 -- Incorporating waiting time until the critical events 

 -- Try features constructed from standard HMM, Kalman Filter 

 Maximum 

 -- Expected deliverables 

 -- Optimize features to achieve better classification performance  

  

5. Management Plan 

--Regular weekly meeting/consult with Dr. Fackler or Dr. Lehmann 

--Frequent consult with related experts when necessary 

--Update wiki pages regularly at weekends, documentation of the work done in the past week and the work that will be done in the 

following week 

--Report progress regularly to Dr. Fackler and Dr. Lehmann 

  

6. Dependencies 

--Confirm regular weekly meeting/consult with Dr. Fackler and Dr. Lehmann 

--Data availability (resolved) 

 

7. Timeline 

Multivariate time series 

Sliding window 

Critical events  

Time 
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Timeline' week'1' week'2' week'3' week'4' week'5' week'6' week'7' week'8' week'9' week'10' week'11' week'12'

Milestone'1'

reading'list' '' '' '' '' '' '' '' '' '' '' '' ''
project'plan' '' '' '' '' '' '' '' '' '' '' '' ''
preprocessing'
data' '' '' '' '' '' '' '' '' '' '' '' ''

Milestone'2'
(Minimum)'

Features'as'log'
odds'raCo' '' '' '' '' '' '' '' '' '' '' '' ''
LogisCc'
regression' '' '' '' '' '' '' '' '' '' '' '' ''
AUC'and'ROC' '' '' '' '' '' '' '' '' '' '' '' ''

Milestone'3'
(Expected)'

try'HMM' '' '' '' '' '' '' '' '' '' '' '' ''
try'Kalman'
Filter' '' '' '' '' '' '' '' '' '' '' '' ''
OpCmizaCon' '' '' '' '' '' '' '' '' '' '' '' ''

Milestone'4'
Model'
comparison' '' '' '' '' '' '' '' '' '' '' '' ''
Project'report' '' '' '' '' '' '' '' '' '' '' '' ''


