Photoacoustic Registration and Visualization: Checkpoint

Alexis Cheng Group 9 Mentors: Dr. Russell Taylor, Dr. Emad Boctor, Dr. Jin Kang Johns Hopkins University March 27, 2012

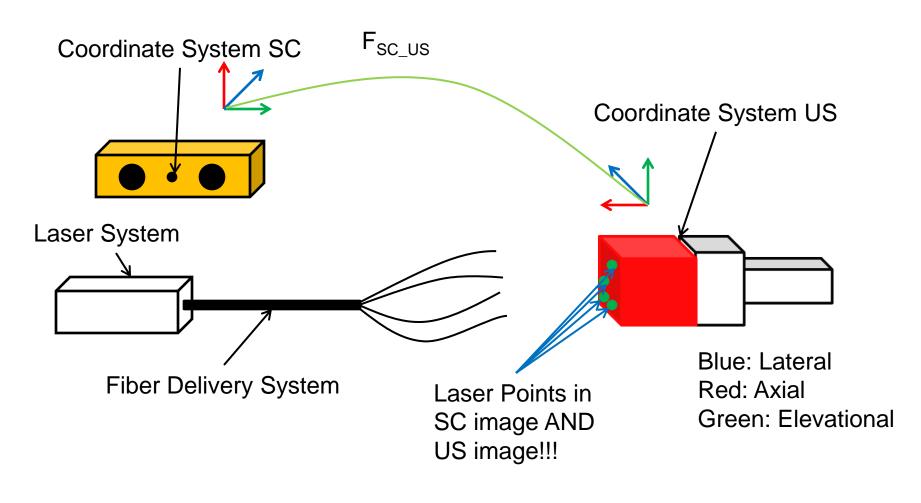
Overview

- Summary
- Motivation
- Milestones
- Deliverables
- Results
- Problems
- References


Summary

- Goal:
 - Direct Registration between 3D Stereocamera space and 3D
 Ultrasound space using Photoacoustic Imaging
- Aims:
 - Develop a multi-spot fiber delivery system
 - Collect Ultrasound data using a 3D probe
 - Segment laser points from Stereocamera images and photoacoustic signals from Ultrasound volumes automatically
 - Register 3D Stereocamera points with 3D Ultrasound points
 - Visualize points within the same space
 - Obtain experimental results on phantom and ex-vivo tissue
 - Demonstrate a sub-millimeter target registration error

Motivation


 $F_{SC_{US}}$ error = [3.58 mm, 3.37 degree]

Motivation

Milestones

- Phantom Construction (2/27)
 - Criteria: Create phantom suitable for 3D PA imaging
 - Status: Achieved. Made several ex-vivo tissue phantoms that have perished.
- 3D Ultrasound (2/27)
 - Criteria: Be able to manually segment the PA signal from a 3D volume
 - Criteria: Be able to collect a 3D Volume
 - Status: Achieved. Shown in Results later.
- Fiber Delivery System (3/5) (4/23)
 - Criteria: Develop a fiber that can shine multiple laser spots at once
 - Status: Delayed. Able to couple laser with fiber. Able to generate PA signal if fiber is very close to phantom. Shown in Results later.
 - Unresolved: Need to collimate laser coming out of fiber

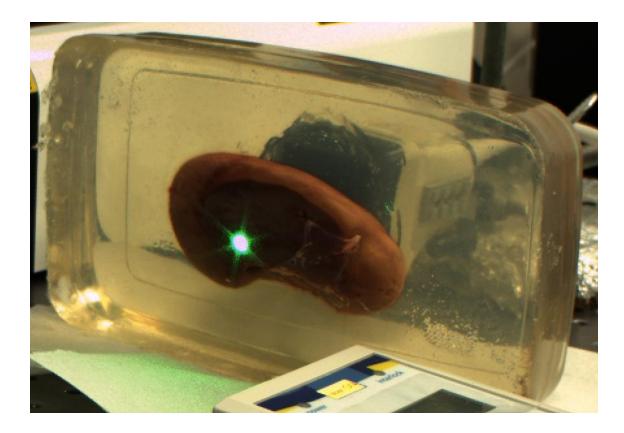
Milestones

- Visualization (3/26) (4/2)
 - Criteria: Be able to display SC and US points in the same space
 - Status: Minimum Achieved. Shown in Results later.
 - Unresolved: Visualization of representation of US volume in SC space
- Automatic Segmentation (4/16)
 - Criteria: Able to segment desired PA signal from a set of images
 - Status: Ongoing. Preliminary results shown later.
 - Unresolved: Need to automatically determine threshold values
- System Integration (5/7)
 - Criteria: Pieces fit together
 - Status: Ongoing. Code is now modular and reusable.

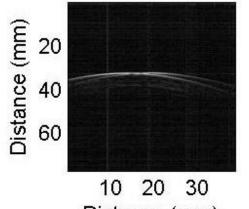
Milestones

Task	13-Feb	20-Feb	27-Feb	5-Mar	12-Mar	19-Mar	26-Mar	2-Apr	9-Apr	16-Apr	23-Apr	30-Apr
Phantom												
Construction												
2D - 3D Ultrasound												
Ex-vivo Experiments												
Experiment Validation												
Fiber Delivery System												
Validate Fiber												
Delivery System with												
Experiments												
Visualization												
Validate Visualization												
with Experiments												
Automatic												
Segmentation												
Validate												
Segmentation with												
Experiments												
Complete system												
integration												
Ex-vivo Experiments												
Experiment Validation												
							LABORATORY FOR					

Deliverables

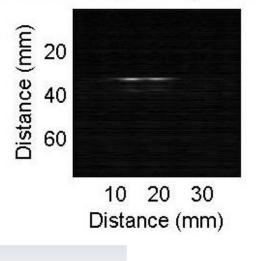

- Minimum
 - Phantom and Ex-vivo Experimental Results with 3D Ultrasound
 - Ability to project multiple laser points concurrently
 - Visualization only shows points overlaid together
 - Automatic Segmentation working on 2D Ultrasound images or each individual 3D Ultrasound slice
- Expected
 - Visualization overlays points and representation of 3D Ultrasound volume
 - Automatic Segmentation working on 3D Ultrasound volume
- Maximum
 - Ability to collect 3D RF data without manually actuating motor
 - Complete system integrated together

Results (Phantom)


- Porcine Kidney
 embedded in Gelatin
 Phantom
- Surface of Kidney is exposed

Results (Fiber Delivery)

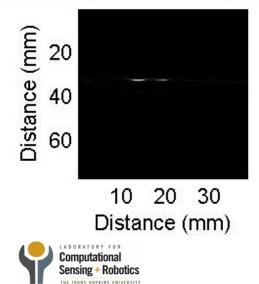
Prebeamformed image 16 frame 3



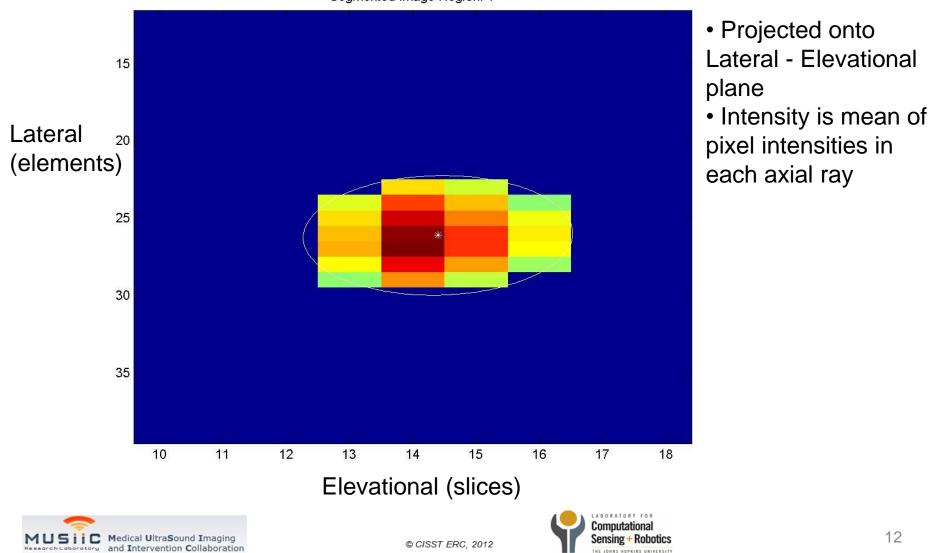
Distance (mm)

 Multiple laser spots projected at the same time

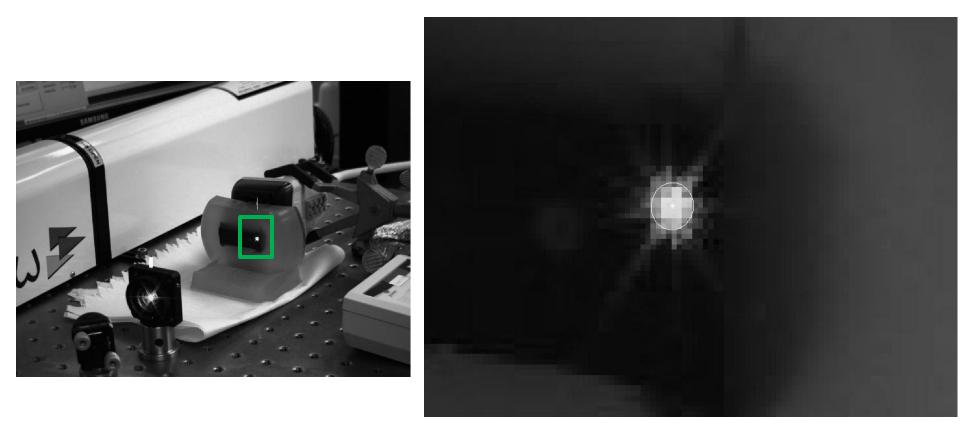
- Resulting beam size is ~ 1 mm diameter
- Fiber end is VERY close to the phantom


Beamformed image Delay-Sum 16 frame 3

Medical UltraSound Imaging


and Intervention Collaboration

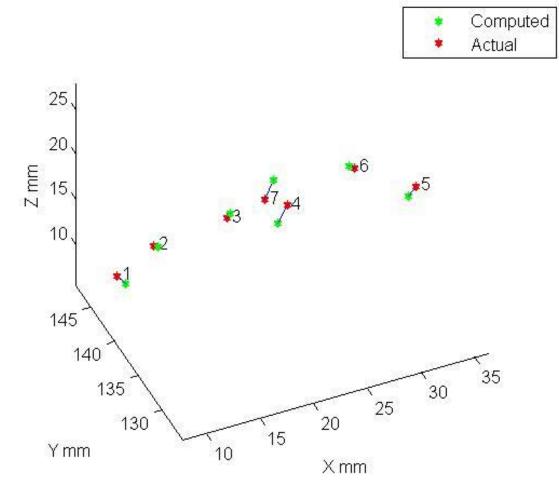
Beamformed image K-Wave 16 frame 3



Results (US Segmentation)

Segmented Image Region: 1

Results (SC Segmentation)



Results (Visualization)

US and SC Test Points in US Frame

Results (Ex-Vivo TRE)

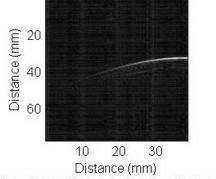
Test Point	Lateral (mm)	Axial (mm)	Elevational (mm)	Euclidean (mm)
7	0.38	0.91	2.68	2.86
6	0.5	0.07	0.5	0.71
5	0.76	0.04	0.85	1.14
4	0.43	0.92	2.62	2.81
3	0.08	0.53	0.88	1.03
2	0.22	0.4	0.04	0.46
1	1.09	0.62	1.67	2.09
Average	0.5	0.5	1.32	1.59

© CISST ERC, 2012

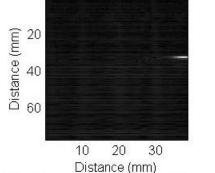
- Ex-Vivo Tissue Data
- [4] K-wave Beamformed
- 6 mm laser beam diameter

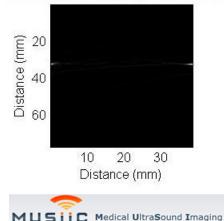
Results (Phantom TRE)

Test Point	Lateral (mm)	Axial (mm)	Elevational (mm)	Euclidean (mm)
6	1.08	0.84	1.55	2.07
5	0.92	0.67	0.02	1.13
4	1.2	1.73	1.77	2.76
3	0.49	0	1.35	1.44
2	2.58	0.01	0.15	2.58
1	0.34	0.07	1.02	1.08
Average	1.1	0.55	0.98	1.84


© CISST ERC, 2012

- Phantom Data
- Delay and Sum Beamformed
- ~ 1 mm laser beam diameter




Prebeamformed image 31 frame 3

Distance (mm) Beamformed image Delay-Sum 31 frame 3

Beamformed image K-Wave 31 frame 3

and Intervention Collaboration

20 30 stance (mm) • Au

Problems

- [4] K-wave beamforming vs Delay-Sum beamforming
 - K-wave produces a smaller spot laterally
 - BUT It doesn't work if the signal is near the edge!
- Correct Point in Region
 - How to determine a point from a region?
 - Centroid? Weighted Centroid? Centroid of Best fit Ellipse?
 Weighted Centroid of Best fit Ellipse?
- Automatic Segmentation
 - Difficult to determine threshold online because intensities vary between images
 - Correlation with a template PA signal?

References

- [1] Boctor E. et al., "A Novel Closed Form Solution for Ultrasound". ISBI 2004
- [2] Navab N. et al., "Camera-Augmented Mobile C-Arm (CAMC) Application: 3D Reconstruction using Low Cost Mobile C-Arm". MICCAI 1999, 688-697
- [3] Wiles A. et al., "Accuracy assessment and interpretation for optical tracking systems". Medical Imaging 2004, vol. 5367: 421-432
- [4] Treeby B., and Cox B., "k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields". *Journal of Biomedical Optics.*, vol. 15, no. 2, p. 021314, 2010

Questions?

© CISST ERC, 2012

