Photoacoustic Registration and Visualization

Computer Integrated Surgery II

Spring, 2012

Alexis Cheng, under the auspices of Professors Russell Taylor, Emad Boctor, and Jin Kang

Introduction

- •Surgical Guidance systems are commonly used to aid surgeons via image overlays
- •Lasers can generate 3D points in Ultrasound space due to the photoacoustic effect
- •Laser spots will also appear on video and can be represented as 3D points in video space
- •These two 3D point sets can be directly registered, resulting in a transformation between Ultrasound and video space

Solution

AND US image!!! Green: Elevational

Problem

Standard surgical guidance systems have a large form factor
They also require existing surgical tools to be modified with tracked markers

•The object of interest (Ultrasound transducer) must be calibrated with the markers

•Certain limitations such as visibility (Optical) or metal interference (Electromagnetic)

•Standard Electromagnetic or Optical trackers are limited to errors larger than 3mm

Results

N = 30 for Synthetic Phantom and N = 33 for Ex-vivo Tissue
This system shows significantly lower errors (~ 1 mm) than the standard optical or electromagnetic systems (~ 3 mm)
Allows for a more accurate representation of the Ultrasound volume in the video images

Target Registration Error		
Dimension	Synthetic Phantom	Ex-Vivo Tissue
Lateral (mm)	0.39	0.28
Axial (mm)	0.24	0.95
Elevational (mm)	0.55	0.29
Euclidean (mm)	0.80	1.08

2. Apply intensity and pixel size thresholds

3. Compute Intensity-Weighted Centroid

4. Triangulate point from left and right images

Ultrasound Segmentation

1. Filter noise in Ultrasound Volume

2. Mean Intensity Projection along axial axis

3. Segment region

4. Compute Intensity-Weighted Centroid

5. Bilinearly interpolate axial point

Segmented Image Region: 1

•No need for markers that can be tracked by the optical or

Lessons Learned

Software pipelines require many revisions
Store all intermediate data for debugging purposes
Project plan needs to be constantly revised
Validate results rigorously before presenting

Credit

•Alexis Cheng was responsible for all parts

electromagnetic system

No need for calibration between the marker and the transducer
Transducer does not have to be visible to the camera
No metal interference

Future Work

- Finalize fiber delivery system
- •Integrate the system with surgical robots
- •Conduct more experimental trials
- •Conduct in-vivo trials

Publications

•Paper submitted to MICCAI 2012

Acknowledgements

•We thank XiaoYu Guo, Nathanael Kuo, and HyunJae Kang for their help in setting up the system

