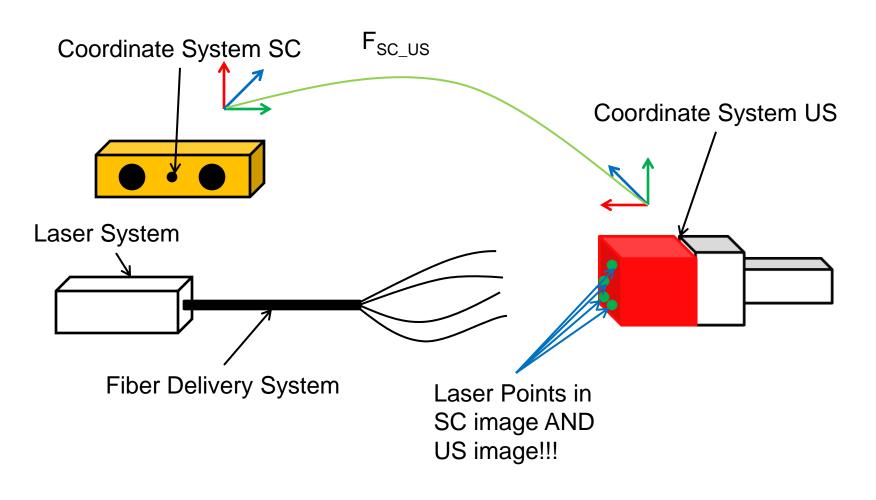
# Photoacoustic Registration and Visualization: Paper Seminar Presentation

Alexis Cheng Group 9 Mentors: Dr. Russell Taylor, Dr. Emad Boctor, Dr. Jin Kang Johns Hopkins University April 26, 2012








### Overview

- Background
- Paper Summary
- Paper Analysis
- References



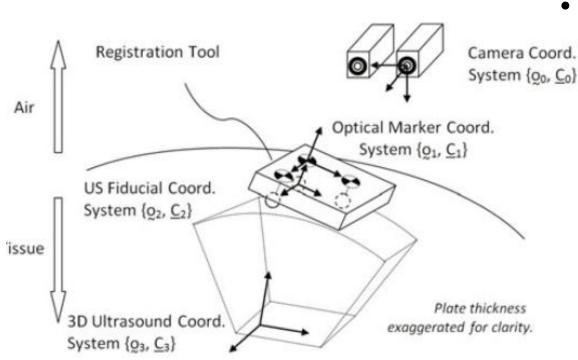


# Background







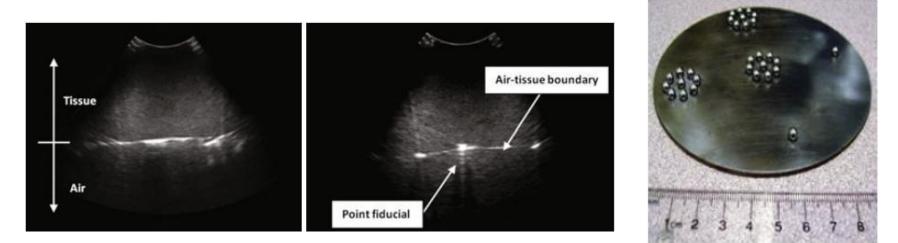

### Paper Summary

- State-of-the-art solution for the same problem as my project
- Their statistical analysis is applicable to my project
- Their experimental considerations are applicable to my project





## Paper Summary




- Goals:
  - Accuracy of localizing fiducials on an airtissue boundary in Ultrasound
    - Accuracy of registration from 3D Ultrasound to Stereoscopic Camera





#### Paper Summary - Localization

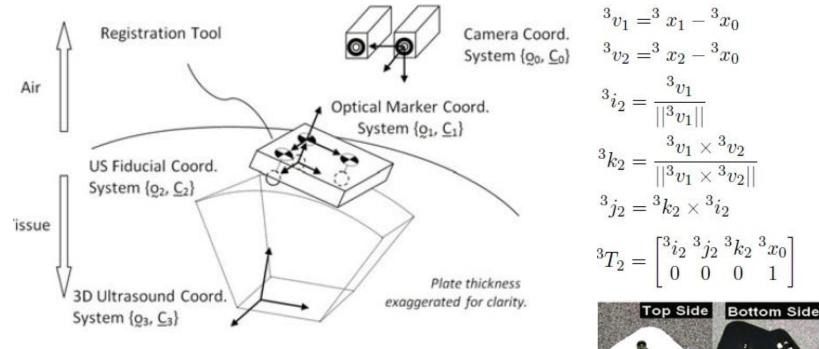


| Case    | Fiducial Size | Lateral Position | Angle of Air- | Boundary | Stiffness of |
|---------|---------------|------------------|---------------|----------|--------------|
|         |               | in US Image      | Tissue        | Depth    | Tissue       |
|         |               |                  | Boundary      |          |              |
| 1       | 2mm           | Offset (10cm)    | 0 degree      | 3cm      | 12 kPa       |
| 2       | 3mm           | Central          | 20 degree     | 6cm      | 21 kPa       |
| 3       | 4mm           | N/A              | 40 degree     | 9cm      | 56 kPa       |
| Control | 3mm           | Central          | 0 degree      | 6cm      | 21 kPa       |





# Paper Summary - Localization


- One-way Analysis of Variance (ANOVA) testing for statistical significance in the variables
- 80 measurements for each variable combination

| Variable         | Value                    | Mean $\pm$ Std Dev. (mm) | Median (mm) | RMS Error |
|------------------|--------------------------|--------------------------|-------------|-----------|
| Fiducial Size    | 2  mm                    | $0.94 \pm 0.34^{*}$      | 0.89        | 1.00      |
|                  | $3 \mathrm{mm}$          | $0.82 \pm 0.28$          | 0.78        | 0.87      |
|                  | $4 \mathrm{mm}$          | $0.70\pm0.20$            | 0.67        | 0.73      |
| Boundary Depth   | Long (9 cm)              | $0.54 \pm 0.18^{*}$      | 0.55        | 0.57      |
|                  | Med. $(6 \text{ cm})$    | $0.82 \pm 0.28$          | 0.78        | 0.87      |
|                  | Short $(3 \text{ cm})$   | $0.66 \pm 0.20^{*}$      | 0.64        | 0.69      |
| Tissue Stiffness | High (12kPa)             | $0.81\pm0.30$            | 0.78        | 0.86      |
|                  | Med. (21kPa)             | $0.82 \pm 0.28$          | 0.78        | 0.87      |
|                  | Low (56kPa)              | $0.80\pm0.19$            | 0.80        | 0.82      |
| Boundary Angle   | 0°                       | $0.82\pm0.28$            | 0.78        | 0.87      |
|                  | $20^{\circ}$             | $0.78 \pm 0.28$          | 0.75        | 0.83      |
|                  | $40^{\circ}$             | $1.04\pm0.35^*$          | 0.97        | 1.10      |
| Lateral Position | Center                   | $0.82 \pm 0.28^{*}$      | 0.78        | 0.87      |
| On Boundary      | Offset $(10 \text{ cm})$ | $0.60 \pm 0.28^{*}$      | 0.59        | 0.66      |





# Paper Summary - Registration



 ${}^{o}T_{1}$  is given by the stereo camera's triangulation of the optical markers

 ${}^{1}T_{2}$  is given by the registration tool geometry  ${}^{0}T_{3} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}$ 





# Paper Summary - Registration

- Get registration by placing registration tool on phantom surface in water bath
- 2. Remove phantom and place test tool inside
- 3. Acquire US volume
- 4. Segment center of crosswire
- 5. Drain water
- Obtain SC images that track the optical markers on the test tool

- Resolve crosswire center in stereo camera space based on tool geometry
- Use registration to transform SC point to US space
- Error is Euclidean norm between US point and transformed SC point





crosswire





# Paper Summary - Registration

12 test points ElectroMagnetic: 3.07 +- 0.75 mm [1] Optical: 2.83 +- 0.83 mm [2]

|                       | $e_{Lateral} (\mathrm{mm})$ | $e_{Elevational} (mm)$    | $e_{Axial} (\mathrm{mm})$ | $e_{Total} (\mathrm{mm})$ |
|-----------------------|-----------------------------|---------------------------|---------------------------|---------------------------|
| Registration 1        | $0.90\pm0.44$               | $0.77\pm0.33$             | $1.08\pm0.75$             | $1.75\pm0.56$             |
| Registration 2        | $1.02\pm0.45$               | $0.60\pm0.32$             | $1.14\pm0.99$             | $1.83\pm0.74$             |
| <b>Registration</b> 3 | $0.65\pm0.43$               | $0.76\pm0.33$             | $1.01\pm0.63$             | $1.55\pm0.53$             |
| <b>Registration</b> 4 | $0.57\pm0.40$               | $0.82\pm0.30$             | $1.03\pm0.79$             | $1.60\pm0.58$             |
| Average               | $0.78\pm0.45~\mathrm{mm}$   | $0.74\pm0.32~\mathrm{mm}$ | $1.07\pm0.78\mathrm{mm}$  | $1.69\pm0.60~\mathrm{mm}$ |





# Paper Summary - Discussion

- Fiducial Tail Artifact
  - Model tail artifact to reduce axial error
- Ultrasound and stereo camera ideally fixed
  - Reacquire registration
  - Use robot kinematics to get new registration
- Laparoscopic camera have smaller disparity
  - Larger foldable registration tool
- Minimum required fiducials used
  - More registration fiducials to average errors





# Paper Analysis

#### Pros

- •Good overview of the field
- •Excellent choice of variables in fiducial localization
- •Excellent statistical analysis to show significance
- •Leads reader through frame transformations in detail
- •Specific tools for testing purposes
- •Subsurface error as opposed to surface

#### Cons

- •Other variables directly affecting image quality such as level of scattering
- •Localization is manual and difficult to reproduce
- •A figure would have helped registration accuracy experiment
- •Foldable registration tool sounds terrible





### References

- [1] Cheung, C.L., et al.: Fusion of stereoscopic video and laparoscopic ultrasound for minimally invasive partial nephrectomy. In: Medical Imaging 2009: Visualization, Image-Guided Procedures, and Modeling. Proc. SPIE, vol. 7261, pp. 726109–726110 (2009)
- [2] Leven, J., et al.: DaVinci canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 811–818. Springer, Heidelberg (2005)







# Questions?

© CISST ERC, 2012



