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Abstract— In this work we investigate techniques for devel-
oping a system for automated workflow and activity recognition
in an Intensive Care Unit using a set of RGB-D cameras. The
ultimate goals are to increase safety, optimize workflow, increase
resource allocation efficiency, and distribute activities based
nurse skill. For this project we learn to automatically recognize
a set of 7 high-level activities. We take a three step approach to
classifying actions from depth images. People are extracted from
the images by background subtraction and then segmented into
temporal action sequences based on their center of mass. A
23-dimensional feature vector is generated from each action
sequence. We evaluate this with two types of discriminative
classifiers and achieve around 60% accuracy on two datasets
with 5 and 7 actions per set. Given that this is the first work
doing automated recognition using 3D cameras in an ICU,
we provide thorough discussion of potential future research
directions.

I. INTRODUCTION

An Intensive Care Unit (ICU) is a hectic place. Dozens of
staff members come in and out on a regular basis and perform
a large number of small but important tasks necessary for a
patient’s proper recovery. Estimates from doctors at the local
Pediatric ICU indicate that there may be around 800 micro-
tasks completed during the average patient’s stay. Enumerat-
ing all of these tasks is a problem of it’s own and evaluating
when an individual task is completed provides additional
complications. Some typical tasks include giving medicine,
checking diagnostics, inserting IVs, performing arterial-line
insertions, emptying chest tubes, and documenting vitals.

Our goal is to develop a system for automatic monitoring
of personnel activities using a set of 3D cameras placed
in an Intensive Care Unit. There are four key benefits that
this type of system could have which benefit both patients
and the hospital. (1) Safety can be increased by checking
if certain activities are completed, such as giving medicine
at the appropriate time. (2) Workflow can be optimized by
determining which activities are the most time consuming
and spread them out. For example, sometimes there are
multiple nurses in a room doing different activities. It may
be more efficient to have both actions be completed by the
same person. (3) By monitoring the needs of each patient, the
hospital can efficiently allocate the number of staff members
and resources on site. This could prevent problems of over-
or under-staffing. (4) Additionally, the quality of the nurses
could be measured to determine how well they work with
different types of patients. This could increase the quality of
care by partnering nurses with specific patients that better
suit their skills.

There are a number of studies in the medicine literature
with regards to nurse workflow. If our work is expanded

Fig. 1. A frame from one of our experiments at the Pediatric ICU.
Shown are two personnel on the right and back and the patient in
the middle.

to identify individual people then it would be possible to
evaluate the cognitive load of hospital staff and potentially
increase the quality of working conditions. For further ref-
erence to cognitive load see [1], [2], [3] and [4].

While automatically determining activities with a fine
granularity would be very useful, it is unrealistic solely using
camera data. For example, it is clear that a low resolution
camera would be able to detect when a nurse gives a patient
a specific medicine. However, the general idea of giving
medicine may be possible. In this exploratory work, we pick
a set of five to seven actions common in an ICU. These
include actions like emptying urine tubes, minor procedures
on the patient, and checking diagnostics.

It is important to note that with the aid of other sensors
more refined detection my be possible. For this preliminary
study we chose to use the XBox Kinect for its potential
to detect scene-level activities. The Kinect captures color
and depth imagery resulting in a colored 3D point cloud.
Unfortunately, for this study access to the color data is
limited due to confidentiality reasons. While we do not
currently use the color data, we anticipate using it in the near
future to extract color features to help discriminate personnel
in the scene.

It is worth noting that there are multiple facets to au-
tomated activity monitoring. There are two key directions:
retrospective and real-time analysis. The retrospective ap-
proach aims to detect personnel actions throughout the course
of a patient’s stay and is helpful for the aforementioned
reasons. The other component, real-time analysis, is useful
for problem prevention. This could be done to track the



Fig. 2. The pipeline includes three key elements: (left) recording
data from RGB-D cameras at the ICU, (middle) extracting features
based on cues from our body tracking, and (right) classification of
each segment into high-level actions.

patient and alert nurses if they are moving too much or
getting out of their bed. We saw during our second data
collection that this is a real problem. The night before we
setup, the toddler ripped out a tube sown into him which
caused complications and ultimately more work for doctors.
This is also a problem in adult ICUs where patients will
attempt to leave the room without permission. They may
be heavily medicated and feel fine but are actually in a
worse condition that they think. This may result in the patient
falling and injuring themselves even more.

Our pipeline takes the following approach, as shown in
figure 2. In the ICU, we record several hours worth of
footage using a set of RGB-D cameras. From this data we
then create a lower dimensional feature vector for activity
recognition. This comes in the form of derived signals. Using
the depth images we are able to extract people using a
straight forward background subtraction technique. Features
such as body position are gathered. Action sequences are
created by tracking these segments over time. We feed
features from these sequences into two different classifiers
to output the label of each action.

In Section II, we present related activity recognition work.
Sections III through V detail our segmentation algorithms,
feature descriptors, and recognition methods respectively.
Section VI shows results based on the two datasets that we
gathered. Finally, Section VII closes with our thoughts and
ideas for future work.

II. RELATED WORK

Video-based activity monitoring has become a prevalent
research topic over the past couple of decades. Significant
work has been done using different variations of Hidden
Markov Models including [5], [6] and [7]. Spatio-temporal
techniques [?] have proven moderately successful for video
with a large number of classes. Context free grammars and
hierarchical graphical models that encode sub-actions into
“processes” have also been shown to provide good results
[8].

Similar work to us has been done in a mock operating
room (OR) at the Technical University of Munich, in the

“Aware Home” at Georgia Tech, and in the Quality of
Life Center “Kitchen” at Carnegie Mellon University. At
TUM, Padoy et. al employs “Workflow HMMs” to encode
a probabilistic flowchart-like design to determine things
like the time remaining in a procedure [7]. At the Aware
Home, Muhammad et. al uses unsupervised based methods
with suffix trees to detect everyday activities. In the CMU
Kitchen, researchers attempt to answer similar questions to
us, however they use a greater variety of sensors including
egocentric cameras and inertial measurement units (IMUs)
[9].

The recent advent of inexpensive 3D imaging systems like
the XBox Kinect has made it more cost effective to work
with 3D data. Using 3D data helps some of the problems
that algorithms using traditional 2D cameras face. Topics
like segmentation become easier because of the additional
depth information. There are a number of recent activity
recognition projects using the Kinect such as [10] which uses
it for in-home elderly fall assessment.

Recently there has been increased interest in gesture
recognition. In Section VII, we discuss an approach we
implemented that has similarities to [11]. In this work they
develop a technique for learning arbitrary gestures for use
in an Operating Room. There is a competition run by a
group of prominent computer vision faculty at CVPR 2012
to develop the best One Shot Learning gesture algorithm.
One Shot Learning is a technique where only one example
is used to train a classifier. Preliminary results from the
competition have been released [12]. Some of the leading
competitors use techniques such as Hidden Markov Models,
Dynamic Time Warping, and Histogram of Oriented Gradi-
ents (HOG)/Histogram of Oriented Flow(HOF) features.

Many of these gesture techniques require knowledge of
the skeletal information, such as the positions of the hands
and the head. The OpenNI Kinect drivers come with the
NITE module which gives skeletal information as described
in [13]. After collecting data in the ICU we found that this
software did not work due to the high number of occlusions
in the room and the variability in staff pose. Normaly when
using the Kinect, a user initiates their skeleton by distinctly
posing in front of the camera. It is not feasible to do this in
our setting. The work in [14], which uses geodesic extrema
on the body as seeds for the body pose estimation, has laid
the groundwork for a number of other related works. Our
progress in this area is described in section VII.

III. SEGMENTATION

Our goal is to determine what action each person is
performing at any time. As the first step in accomplishing
this we employ two types of segmentation: image-based and
temporal-based. To isolate each person and their correspond-
ing actions we must setup a method of detecting people and
tracking them over time.

Our first step towards identifying people was to perform an
experiment to see how effective the built-in skeletal tracker
from Microsoft works in the ICU. In good conditions this
tracker will output a set of joints corresponding to positions



Fig. 3. Examples of Skeletons generated from the Microsoft tracker.
Red means a bad skeleton, green means good, and yellow means,
correct detection but bad pose estimation

of body parts including hands, the head, chest, and others.
Our results show that performance in the ICU is lackluster,
as depicted in Figure 3. The four biggest problems are
as follows: (1) The skeletons commonly initialize a user
incorrectly if they walk into the scene sideways. (2) The
curtain on the left side of the image is depicted as a skeleton
for a large part of the multi-hour recording. (3) When people
walk next to other objects, like track cans, the skeleton
sometimes merges together with the other object. There was
even a case where a person left the scene and the skeleton
was still detected on the other object. (4) Lastly, monitors in
the background are sometimes miss-classified as people.

In orders to track people more robustly in the ICU we
employ our own methods of segmentation and tracking.

A. Image Segmentation

Two methods of background subtraction were explored to
detect people in our scene. The first used a spectral clustering
method and the second used only a connected-components
method with a gradient mask. The simple connected com-
ponents method gave better results and was ultimately used.
While this appears to be an easy problem, local variations
in the image make it more difficult. Each person may have
depth values ranging by about a quarter meter, so simple
thresholding methods do not work.

Both techniques begin by differencing the current frame
and a model of the background. The background is generated
in three steps: (1) First, a set of five person-less images
is averaged. (2) The Kinect has a large amount of pixel
noise which is stored as NaN and Infinity in the image. To
compensate we fill in error spots with their nearest neighbors.
(3) Lastly, minimum and maximum thresholds are set to
eliminate values that are realistically too close or far from
the camera. This process is represented in Figure 4.

1) Cluster-based method: A technique using Density-
based Spatial clustering of Applications with Noise (DB-
SCAN) was developed to attempt to segment people in the
scene. The pixels of each human are clustered together in
3D-space thus we expected that this type of technique would
work well. DBSCAN was chosen because, unlike K-Means
and many other clustering algorithms, it does not rely on
specifying a number of nodes. The implementation used is
available in the SciKits-Learn machine learning library for
Python. Our technique is as follows:

Fig. 4. The background subtraction technique starts by removing
a background model of the image. This model is comprised of a
mean image whose noise has been filled in using a nearest neighbor
technique.

1) Morphological opening filter
2) Median Blur
3) Compute histogram
4) Fit clustering technique
5) Find connected components
6) Extract components above pixel count threshold
The output is a set of candidate people. While this tech-

nique works very well in many cases, it does not always find
all of the people. Additionally, sometimes multiple people
are segmented as one person when they are standing at a
similar depth. This is a problem because there are often
people standing at a similar distance.

2) Gradient-based: The second approach simply attempts
to mask the outline of people based on local gradients. The
idea is that if a gradient is large then it is likely a border
between objects.

Gradient-based Technique:
1) Calculate gradient of image
2) Mask pixels that have too large of a gradient
3) Morphological filters
4) Find connected components
5) Extract components above pixel count threshold
In practice this approach works better than the cluster-

based method. The downside is that to accurately disam-

Fig. 5. The three people in the room are accurately segmented
using a gradient-based approach.



Fig. 6. Example image and temporal segmentation from the second
dataset. The orange part represents the image segmentation at this
frame, the red square is the current center of mass, and the blue
line is the center of mass at each time step in the sequence.

biguate people a large enough gradient mask must be used.
Thus, the outline of a person is generally a few pixels inset
from the actual boundary. An example segmentation is shown
in Figure 5

B. Temporal Segmentation

To keep temporal consistency, each segment is grouped
into an action set based on its center of mass. The problem
here is that there are multiple segments at any one time and
people are coming and leaving at different times. Addition-
ally, people may move a substantial amount between frames
which can try to throw off the tracker. To account for this
we calculate a distance matrix between the segments in the
current frame and people in the previous frames. The idea is
that the distance between people in two frames is correlated
and thus the closest new segment to a previous segment
should be put in the same sequence.

In practice, there are problems with noise. Sometimes the
center of mass is thrown off by a substantial amount, thus
positions in new segments are compared with the moving
average of the center of mass over the past three frames.
Additionally, new segments are added to sequences if their
distance to a previous person is less than 0.5 meters and the
last person was seen within 5 frames.

The blue line in Figure 6 represents the nurse’s position
at all points of time in this particular sequence.

IV. FEATURE EXTRACTION

Our approach aims to classify each sequence based on the
prominent action taking place. The classification techniques
in mind requires a static number of variables so there were
several considerations to take into account. One trouble is
that there are a variable number of people in a room at any
point. Oftentimes the activities of these people are related.
For example, there are times in our second dataset where
two people were working together to perform the same
procedure. In the first dataset it was common for nurses
and parents to talk around the patient’s bed. We want to
incorporate these variables to improve the accuracy of our
system.

In the end we developed four types of features: summary
statistics, virtual touch sensors, orientation-based, and inter-
action coefficients. These amount to 23-dimensions as shown
in Table I.

TABLE I
FEATURES EXTRACTED FROM THE DEPTH IMAGES

Component # Dimensions
Arc Length 1

Arc Velocity 1
Center of Mass 1
Touch Sensors 2

Orientation Histogram 12
Interaction Angles 4

A. Summary Statistics

Each time step of an action sequence includes two impor-
tant pieces of information: center of has and current time.
We use these to form three useful features that summaries
activity. Path length is calculated as the integral of changes in
center of mass over time. The arc velocity is simply the path
length divided by the sequence duration. Lastly, the averaged
center of mass is also included. Note that in practice we also
tried using the frame count. However, we saw in the Decision
Forest that this had a 0% importance weighting.

B. Virtual Touch Sensors

Looking through the data it is apparent that one of the
distinguishing factors between whether a nurse is performing
a procedure or checking vitals is how long these spend at
either the head or foot of the patient. Drugs are generally
inserted into tubes that are on the bottom half of the person’s
body. Using this knowledge we create vital touch sensors.
These are activated if the bounding box of personnel comes
within a certain radius of the sensor. The total number of
activations for each sensor is used as a feature. The circles
in Figure /refTouchSensors depict the locations of our two
touch sensors in dataset 2.

C. Histogram of Orientations

Knowing the orientation of a person can be very useful
because it gives an estimate of where they are looking and
what they are doing. For instance, a nurse could be in the

Fig. 7. Virtual touch sensors are used to see if a nurse is interacting
with the upper or lower part of a patient’s body.



Orientation Estimation Interaction Coefficient
Fig. 8. (Left) A segment and it’s corresponding orientation vectors (Right)
The forward vectors for two segments in a scene

same position when doing a procedure or looking at the
video monitors. The key difference in the direction in which
they are facing. We have found that we can calculate a
rough estimate of orientation by using Principal Components
Analysis. The input to PCA is the 3D information for a
given segment. The output is a set of 3 orthogonal directions
corresponding to the orientation. The vector associated with
the largest eigenvalue is generally directed upwards. This
is because there is the most variation in the vertical axis.
The second eigenvalue is generally the direction the person
is facing. Note that sometimes the second and third vectors
get switched depending on which way the person is facing.
Characterization of this estimation would be interesting fu-
ture work.

In order to include the histogram estimate as a set of finite
feature variables we calculate the histogram of orientations
over the activity sequence. In practice we use use 12 bins in
our histogram. Figure 8 depicts this feature.

D. Interaction Coefficient

There are two questions concerning how we want to
include information about other people in the room. The
first is in regards to how to include features for a variable
number of people. The other question is conceiving what
correlations we want to use between people. We answer this
by using our previous orientation estimate. The projection
of the orientation vector between each person is projected
and used as a set of features. By calculating the maximum
number of people in the room at any time in our datasets
we decided that we should always use 4 variables for this
feature. The values used are the average of the projections
for the sequence. The rationale for using this feature is that
you can tell if people are interacting based on if they are
looking at each other. Figure 8 depicts this interaction.

V. RECOGNITION

Our goal is to classifier between 5 and 10 activities in
the ICU. There are two distinct ways of managing our data
that have a large effect on the type of classifier we use. The
first is to perceive all people and events in one giant soup.
An activity label could be applied at every time step based
on all of the people in the room. The second approach is
to assign a label for every temporal segment. One of the
key benefits is that it allows for multiple actions to happen
simultaneously. From our data, we see that there are times
when one person is emptying urine and the other person is
doing documentation.

Ultimately, we decided on experimenting with Support
Vector Machine and Decision Forest supervised learning
methods to perform recognition. This in large part has to
do with the large number of feature dimensions and the
variable number of people and durations. While it is possible
to employ techniques such as Hidden Markov Models, as
done in [?] and other related work, learning the model
parameters when the dimensionality of the feature-space is
changing is very difficult. While other graphical models, such
as Conditional Random Fields, can make this aspect more
manageable, it is not obvious how to fully implement it in
our situation.

It is also not apparent whether this type of time-series
model is even useful for our situation given that action sets
are relatively independent of each other. We do not see a
noticeable correlation between actions like emptying a urine
tube and any other subsequent action. Also, in our case we
see that the same actions can take very different amounts
of time. For example, sometimes a nurse will come into a
room, give medicine, and leave. Other times they will come
in, observe for a few minutes, then give medicine.

Our model does have one fundamental limitation. Classi-
fication is done on whole activity segments. This means that
if a person comes into the room, talks with others, inserts an
arterial-line, talk with others, and leaves, it may be classified
as only talking with others, because that was the task that
happened for the longest period of time. The idea is that our
classification algorithm will detect the prominent action in
each segment.

A. Data Exploration

Before performing classification we explored the use of
dimensionality reduction in hopes to better visualize the
data and ideally to see how separable the classes were.
Principal Components Analysis, Isomaps, and Local Linear
Embedding (LLE) were used. Figure 9 shows the Isomaps
and LLE techniques on our first dataset. The different colors
denote different classes. These have been hand labeled and
refer to the classes listed in Table II. It is apparent that
Isomaps clusters the classes much better than LLE does.

One of the advantages of the Decision Forest, which we
talk about later, is it’s ability to show how important our input

Isomaps Local Linear Embedding
Fig. 9. (Left) Isomaps and (Right) Local Linear Embedding manifold
learning techniques have been used to explore our data. Different colors
denote different class labels Note that in Isomaps the classes are clustered
together much better.



Fig. 10. Pipeline

features are. Figure 10 shows a 26-dimensional chart with
the importance of each feature. We see that the average center
of mass feature has the highest weight and the path length has
the second highest. Originally, we used 5 variables to denote
the interaction coefficients. In this chart we see that the last
two variables in this group have no weight. As previously
mentioned, we later decreased the number of variables based
on the knowledge from this graph. Ten of the twelve bins
from the orientation histogram are heavily weighted, which
shows that despite only having a rough estimate of where
the person is looking, it is still useful. It is interesting to see
that the frame count has very little importance in our model.
This is somewhat obvious after going through the data – the
same actions can take very different amounts of time. For
example, sometimes a person will observe for 20 seconds
and other times they will be around for several minutes.

B. Classification

From the data exploration, it is apparent that the data is
not linearly separable in a lower-dimensional space. Thus, we
chose to experiment with Support Vector Machines and De-
cision Forests for classification. A Support Vector Machine
(SVM) uses the idea that the data may be separable in a
high dimensional state. A larger feature vector is generated
which includes our inputs with addition variables that are
functions of multiple inputs. The SVM finds the optimal
hyperplane that separates classes. Different kernels can be
used to efficiently transform the data into other forms which
may have better delineation. For example a polynomial or
radial-basis function can be used.

In the multi-class case there are two ways of using an
SVM. The first is called the one-versus-all method which
uses one classifier per class and trains on all of the data.
It has two labels: class and not-class. This means there are
generally many more not-class points than class points. The
second method uses pair-wise classifiers. There are a total
of N*(N-1) classifiers where N is the number of classes. An
SVM is fit between every every class and every other class.
The final classification is generally done by using the class
that wins the most tests.

A Decision Forest generates a large number of simple
decision trees where the nodes in the tree are randomly
picked features. While the technique is relatively new, it has

garnered a lot of attention due to it’s success in many areas,
including in computer vision for tasks like object classifica-
tion. An extension of this method, Extremely Random Trees,
was used based on it’s superior performance.

Multi-Instance learning, a semi-supervised classification
technique, was also explored on the first dataset. This tech-
nique was accurately able to split the datasets into multiple
classes. In this method, there are two bags: positive and
negative. The positive set contains at least one correct class
and the negative bag only has non-examples. These are run
through a classifier, in our case an SVM, and reclassified.
Examples in the positive bag can then be reclassified as
negative examples. In the first dataset this was able to
accurately give a high-level split between tasks such as
observing+rounds and procedures+checkups, but not lower
level splits between procedures and checkups. The nice thing
about this techniques is that not all of the data has to be
labeled. This is especially helpful for larger datasets. Because
we only had a few hours of data per camera we decided it
wasn’t necessary yet.

The SVM and Decision Forests that we used are available
in the SciKit-Learn library for Python.

VI. RESULTS

We recorded two sets of data at the Pediatric ICU. The
first one was done as an improvement study without IRB
approval. This means that the data is not publishable. After
getting IRB approval we collected data once. Two Kinects
were used in both efforts. After collection, the activities were
hand annotated. First we talk about the recording software
that we developed.

A. Recorder

A dynamic frame rate Kinect recorder was written using
C++ with the OpenNI device drivers to capture depth and
color footage. A dynamic framerate is necessary because of
the amount of footage we need. A compressed set of data
requires 216 Gb of space per hour per Kinect when running
at 30 frames per second. Our recorder only captures when
there is motion in the room to decrease the necessary amount

Experiment 1 Experiment 2
Fig. 11. Experimental setups. The green triangles represent the field of
view of the Kinect. (Left) Dataset 1 which was done in a multi-patient room
in the old JHMI PICU (Right) Dataset 2 which was done in a single-patient
room at the new JHMI PICU.



of storage. Ours records at a rate of about 10 FPS if there is
motion in the room and otherwise 1 frame every 3 seconds.
This equates to between 20-135 Gb per hour.

In order to get the project passed through the IRB we said
that all color data would be de-anonymized. In efforts to
do this I experimented using two face detection algorithms.
Unfortunately neither of them worked well enough, thus we
opted to keep the color data locked up at the hospital.

B. Experiments
We recorded two datasets at the Johns Hopkins Medical

Institute’s (JHMI) Pediatric Intensive Care Unit (PICU).
In each experiment we used two Xbox Kinects placed in
different parts of the room, as shown in figure 11. The
first set was collected at the old JHMI PICU which had
multi-patient rooms. This was problematic because nurses
and parents interacting with other patients would sometimes
get in the shot of our cameras resulting in noisy data. The
second set was collected at the new JHMI PICU which has
single-patient rooms. This made our data much more clean.
Unfortunately, we have not had time to sufficiently analyze
the second dataset. Images from both datasets can be seen
throughout this paper.

Using out classification techniques we were able to clas-
sify 5 actions in the first dataset and 7 in the second. See
table II for the individual actions. In the first dataset our
average classification rates were 48% using SVMs and 58%
using Decision Forests. For reference, guessing the class by
chance in this case results in an accuracy of 20%. Figure 12
shows the per-class recognition rates for the Decision Forest
using this dataset. We see that some actions, like rounds,
are classified very well but others, like observing, are much
lower. While overall these are too low to be satisfactory, we
believe that we will be able to achieve better results by using
better quality data and possible using other types of features
or classifiers.

TABLE II
ACTION LABELS FOR EACH DATA COLLECTION

Set I Actions Set II Actions
Rounds Documentation
Talking Talking

Observing Observing
Checking Diagnostics Checking Diagnostics

Procedure Procedure
Other Urine Tube Removal

Ventilator Use
Other

While we recorded with two cameras in the first setup,
we found that the camera near the patient’s feet was not
very helpful. One of the major advantages of using multiple
cameras is that people can be tracked throughout the room.
The cameras should have enough overlap so they can be
registered in one frame such that that the same people can
be detected in both cameras. In the first setup there was not
enough overlap to properly do this. We accounted for this in
the second dataset but have not had time to fully implement
it.

Fig. 12. Per-class accuracy for the first dataset using a Decision
Forest.

The camera near the patient’s head in the first dataset was
very useful for tracking personnel as they worked with the
patient on one side of the bed. However, whenever nurses
came on the other side of the bed they would come in
and out of the camera shot a lot. These would still be
labeled as classes like procedure and checkup, however their
characteristics would be very different than events on the
other side of the bed. We believe that this is on the other
reasons why we get low classification accuracy.

Preliminary results on the new dataset show high classifi-
cation for certain classes, but the work isn’t done enough to
speculate too much. Given the decrease in noisy actions and
the new camera setup we think the results will in general be
higher.

VII. CONCLUSION

While at this point our results aren’t complete, we have
shown that automated activity analysis using 3D vision
techniques may have the potential to be used in an everyday
setting to increase safety, help efficiency, and optimize work-
flow. By performing this study we have opened a number of
interesting research questions and directions.

To continue in the same direction, future work may include
looking at additional types of features. By implementing a
skeletal tracker it will be possible to extract information
about what personnel are doing during procedures. This
should make it easier to differentiate what kind of procedure
they are doing. Gesture recognition may be useful in this
case and could be combined into a hierarchical framework to
use in conjunction with the methods that we have employed.
Other potential information includes traditional space-time
features and using contextual pixel-level information in a
bounding box around the person. For example, in the first
dataset one action is a diaper change. It may be possible
to classifier this type of event based on SIFT or other
descriptors run on the window around the nurse.

It is apparent that knowing information about he room can
be useful. For example, knowing that a nurse is standing next
to a heart monitor may make it easier to classifier that they
are checking vitals than if you know they were standing next
to a computer. To this end, full scene analysis may turn out
to be an important part of activity recognition.

Part of the importance of the recognition work as a whole
is to detect when things go wrong. Anomaly detection is thus



an interesting area. The problem is that currently there isn’t
a list of tasks that must be generated (that in itself is another
potential research area) which makes this type of detection
very hard.

Differentiating between people may be an important task.
This could be used to summaries how much time nurse
spend in the room versus doctors or other personnel. Addi-
tionally, individual people could be detected and potentially
even measured to determine how well they do at particular
tasks. This could be used to allocate better staff to more
problematic patients. One way to do this is to look at a color
profile of the people. While we are not allowed to keep the
color information remotely, due to the IRB, we could extract
histograms or features from the people as features.

Looking at patient movement is also a useful problem.
In the adult ICU it is common for people to try to get out
of bed and slip and fall. In the pediatric ICU, patients will
sometimes move around a lot and accidentally remove IVs
and other tubes. We had first hand experience with this during
our second data collection where on the previous night the
child slid halfway down the bed and pulled out a tube in
their back without anybody seeing. By tracking this, a nurse
could be notified if there is too much movement.

In conclusion, we believe that the Intensive Care Unit is
ripe for automation and that using 3D sensing can have a
large impact on current workflow and safety concerns. While
our current results are not outstanding, we think that with
further improvements a similar system could be used to make
the ICU a better place.
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