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Interfaces (3DUI), Orange County, CA, March 2012 
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Gesture-based Human-Machine Interaction.“ International ACM Conference 
on Intelligent User Interfaces (IUI), Lissabon, Portugal, February 2012 
	
  
L. Schwarz, A. Bigdelou, N. Navab “Learning Gestures for Customizable 
Human-Computer Interaction in the Operating Room.“ Medical Image 
Computing and Computer Assisted Intervention (MICCAI), Toronto, Canada, 
September 2011 
 

Overview: 
In our project, in which we are developing methods for activity recognition in 
the ICU, there are several distinct algorithmic components to keep in mind. 
These include tracking people, identifying equipment, and deciphering actions 
carried out by nurses and staff. In our approach we establish a connection 
between these actions and literature on the topic of gesture recognition. In the 
following, a line of three papers by Ali Bigdelou at the Technical University of 
Munich is detailed which has a close link to our work. The papers feed off of 
each other and thus will be discussed jointly.  

The overarching goal of this work is to develop a system capable of recognizing a 
set of human gestures. The key distinction over prior literature is in the ability to 
learn and recognize both categorical (discrete) and spatio-temporal (continuous) 
gestures. For example, a categorical state may be a waving gesture and the 
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spatio-temporal component may be a normalized hand position between the 
start and the end of the wave. Two dimension reduction-based approaches are 
implemented and compared with two sensing modalities – the Xbox Kinect and a 
set of Inertial Measurement Units (IMUs) placed on the users’ arms. Each paper 
includes a user study using an image viewing application in an operating room. 
In general, this user interface is preferred over traditional mouse and keyboard 
setups. 

Methods: 

Both sensing modalities chosen are high dimensional. The Kinect skeleton 
tracker outputs 15 three-dimensional body positions resulting in a 45 dimension 
sampled up to 30 times per second. Only the orientation component is used in 
the IMUs, so each device contains 4 dimensions – representing a quaternion – 
resulting in a total of 16 dimensions between the four devices. In order to reduce 
this dimensionality, Principal Components Analysis (PCA) and Laplacian 
Eigenmaps are employed. Additionally, the authors demonstrate substantial 
noise in the categorical gesture label using the Laplacian Eigenmap technique, 
thus a Particle Filter is used to smooth the results. A maximum likelihood 
approach is used to establish the categorical state and a Kernel Regression Map is 
used to determine the normalized spatio-temporal value. 

PCA – Intuitively PCA outputs a low dimensional representation of a dataset 
that includes a set of basis vectors in the directions of greatest variance. Figure 1 
highlights the process used for using PCA on the Kinect data. The idea is to run 
PCA on each 45-dimension vector per class per time step. Thus, for each class of 
gestures, the number of basis vectors will be a function of the number of time 
steps. The per class set of bases are normalized to represent the continuum of 
spatio-temporal positions. This procedure is done for each class. 
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Figure	
  1	
  PCA-­‐based	
  dimensionality	
  reduction 

Laplacian Eigenmaps – Manifold learning techniques, such as this, are used to 
find a low dimensional linear embedding from non-linear high dimensional 
spaces. For example, in this application Laplacian Eigenmaps can embed the 16 
dimensional IMU data into a 2D gesture representation. There are three key parts 
to this technique. First, find the nearest neighbors in the high dimensional space. 
This can be done efficiently using approximate nearest neighbor methods. The 
second step is to calculate a similarity function based on the local neighborhood 
using a heat kernel. Lastly, to get the low dimensional output, the eigenvalues of 
the similarity matrix are computed. Note that this output is a Euclidian space. In 
this paper they also define a gesture phase model which is simply based on the 
start, middle, and end of the manifold, as shown in figure 2.  

	
  

Figure	
  2	
  Laplacian	
  Eigenmap	
  technique	
  applied	
  to	
  a	
  sample	
  gesture	
  using	
  the	
  inertial	
  measument	
  units	
  

A Particle Filter is applied when using the manifold technique to track the 
gestures over time. At each timestep a set of particles is added to manifolds 
based on the probability of a sensor reading given the class labels and the low 
dimensional representation. The maximum likelihood solution if determined to 
find the categorical state and the low dimensional outputs are averaged to 
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determine the spatio-temporal position. 

Kernel Regression Map – In order to determine the spatio-temporal position 
using PCA a generative kernel regression technique is used. Remember, the per 
class normalized basis vectors that were calculated are placed at discrete points 
along the continuum from 0 to 1. Essentially, during the testing phase each of the 
bases is weighted based on their similarity to the test basis. Weights for each per 
class basis is determined based on a Gaussian kernel using the distance from the 
test datum as its input using the following equation where s is a sample in high 
dimensional space and w is the weight. 

𝑤! 𝑠! =   exp  (−
1
2    (𝑠! − 𝑠!)/𝜎

!) 

Additionally, the weights are smoothed based on the previous time step. The 
weights and their respective low-dimensional spatio-temporal value are 
evaluated to determine the final 1-dimensional normalized number using the 
following equation where x is the low dimensional value. 

 

Results: 

Given the relative simplicity to these models, the results are surprisingly good. 
For a low quantity of gestures they achieve 90%+ classification accuracy for both 
the Kinect and IMU datasets. Figure 3 shows the rates for the IMU dataset using 
PCA and manifold techniques for a set of 4 to 18 gestures. Note that MREG is the 
time-smoothed kernel regression that we previously mentioned and REG is the 
same method without using the previous classification data point. It’s interesting 
to see that the PCA and manifold techniques achieve approximately the same 
accuracy on average – in one test PCA does slightly better and in another slightly 
worse. This is counter-intuitive if you think about the space of the data and the 
complexity of the algorithms. PCA should do worse at modeling non-linear data 
than Laplacian Eigenmaps. This shows, however, that this is not the case. 
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Figure	
  3	
  IMU	
  results	
  for	
  PCA	
  and	
  manifold	
  techniques.	
  Plot	
  A	
  shows	
  the	
  average	
  rates	
  and	
  B-­‐D	
  show	
  the	
  
min,	
  mean,	
  and	
  max	
  rates	
  for	
  each	
  algorithm. 

Additional plots (not shown here) show that using a displacement-based 
representation of the Kinect data is superior to other distance measures.  In this 
model, the position of each joint is normalized relative to the spine. An approach 
based on relative distances from the parent joint to a child joint also gets similar 
results. This fact is important to my work and has results that are similar with 
what I have seen. 
 
User Study: 
The application for this study is towards developing a natural, gesture-based 
user interface for viewing medical imagery in an operating room. Compared to 
the classical keyboard and mouse interface the participants slightly favored the 
Kinect interface. The IMU-based interface received a little bit less favorable 
results – a one-point difference on a scale from 0-5. As a whole they were 
satisfied with the new interface. Note, however, that users didn’t like the voice 
activation method very much. In two of the studies the participant had to say 
“start” and “stop” to enable/disable the interface controls. Thus a more effective 
method of control is wanted. 
 
Critique: 
Between the three papers the authors didn’t leave two many questions 
unanswered. A couple questions stem from the accuracy studies. They note that 
up to 18 gestures are used in the experiments. It would have been nice if the 
authors discussed the types of gestures more in detail. They mentioned actions 
such as moving your arm up and down to control a vertical sliding bar, but they 
didn’t talk about how much the gestures varied. In my experience if two gestures 
are fairly similar then there is greater classification error. Per-joint and per-
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gesture confusion matrices would have been useful to see if their miss-
classifications are due to a single “bad” gesture or if the error is random.  
 
Further analysis on the datasets would also be appreciated. In the papers they 
have a “common” dataset where all of the training data comes from a group of 
people and the testing data is from another person, as well as a “personalized” 
dataset where the same person does both the training and testing. In my current 
results using a fairly similar PCA-based approach I get a large discrepancy 
between “common” and “personalized” datasets. I get ~95% accuracy for the 
same person but only about 35% when training and testing on different people. I 
am interested to know more about their “common” dataset approach. They get 
only about a 10% difference between those data sets. 
 
These papers have helped define my preliminary direction for the gesture 
recognition component of the ICU project. In the future I will be looking towards 
exploring other approaches such as time-series graphical models and multi-
instance learning with support vector machines to compare how more structured 
models compare with the simplicity of PCA. 


