Body Surface and Intracardiac Mapping of SAI QRST Integral

Checkpoint Presentation

600.446: Computer Integrated Surgery II, Spring 2012

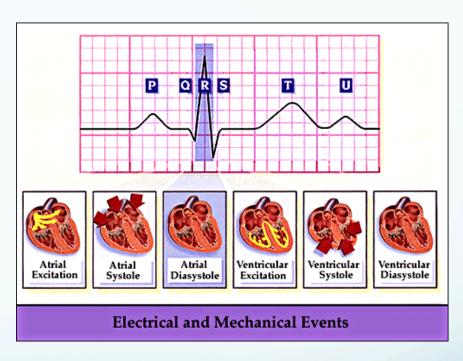
Group 11: Sindhoora Murthy and Markus Kowalsky Mentors: Dr. Larisa Tereshchenko, Dr. Fady Dawoud

Overview

- Introduction
- Motivation
- Quick Background
- Milestones
- Deliverables
- Technical Approach and Results
- Problems and Remaining Work
- References

Why?

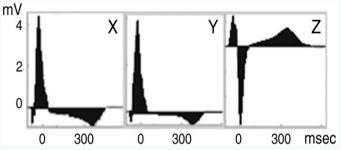
- Physicians use electric potential maps of the heart to treat and diagnose arrhythmias
- Current method to map surface of heart is invasive and takes a long time
- Is there a better way to predict arrhythmias?
- We know that SAI QRST is a better clinical marker for a patient's risk of ventricular arrhythmias but don't understand what it means and how sensitive it is to lead placement


Background- Arrhythmias

- Approximately 350,000 people die of sudden cardiac death every year in the United States ¹
- Half of all deaths caused by heart disease are sudden death ¹
- Known that ventricular arrhythmias are linked to sudden death
 - Ventricular Tachycardia: rapid coordinated contraction of the ventricles
 - Ventricular Fibrillation: rapid uncoordinated contraction of the ventricles
 - Often Ventricular Tachycardia leads to Ventricular Fibrillation which can quickly lead to sudden cardiac death

^{1.} Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009;119:480

Background-ECGs and QRST


- ECGs are regularly used by doctors to diagnose patients with heart problems
- Normal ECG waveform:
 - P depolarization as signal moves through atria
 - QRS depolarization as signal moves through ventricles
 - T repolarization of ventricles

Ecg em events.html. Photograph. EHSL. Web. 22 Feb. 2012. http://library.med.utah.edu/kw/ecg/mml/ecg em events.html>.

Background – SAI QRST

 Sum Absolute Integral QRST (SAI QRST) - absolute area under the QRST regions of the ECG

 Large group (n=355) studies show that SAI QRST is a very good predictor of risk for ventricular arrhythmia²

^{2.} Tereshchenko LG, Cheng A, Fetics BJ, et al. A new electrocardiogram marker to identify patients at low risk for ventricular tachyarrhythmias : sum magnitude of the absolute. Journal of Electrocardiology 2011;44(2):208-216

Re-cap of Progress

Planned Milestones

- ☐ Automatically detecting fiducial points (85% complete)
 - ☑ Criteria: graphical confirmation that our method finds the correct fiducial point
- Averaging the sum absolute and native integrals for each lead
 - ✓ No longer necessary as we already have averaged data
- Calculating sum absolute and native integrals of QRST interval
 - ☑ Criteria: graphical confirmation that our method is calculating the correct integrals
- ☑ Constructing body surface map
 - ✓ Criteria: confirmation of methods and results with our mentors
- ☐ Constructing inverse heart map (0% complete)
 - Criteria: confirmation of methods and results with our mentors

New Milestones

- ☐ Abstract Submission (50% complete)
 - We have completed the preliminary analysis but would like to have more complete data for our mentor to include in the submission
- Paper Submission (0% complete)

Gantt Char

			February March											April												Ma	у						
Stage	Task	20-Feb	22-Feb	24-Feb	27-Feb	29-Feb	2-Mar	5-Mar	7-Mar	9-Mar	12-Mar	14-Mar	16-Mar	19-Mar	21-Mar	23-Iviai	26-Mar 28-Mar	30-Mar	2-Apr	4-Apr 6-Apr	Q-Anr	ה ה ה	13-Apr	16-Anr	18-Apr	20-Apr	23-Anr	25-Apr 25-Apr	27-Apr	30-Apr	2-May	4-Мау	7-May 10-May
	Project Proposal Presentation	755					,										<u>'</u>			'			<u>'</u>			'		'	<u>'</u>				
	Investigating Literature for Noise Reduction			Ø																													
11	Investigating Literature for Fiducial Recognition																																
.	Implementation of Noise Red. and Fiducial Recog.																																
	Code Validation, Testing, and Debugging																																
	Checkpoint																																
2	Investigating Literature for Averaging Beats																																
	Implementation of Averaging Beats																																
	Code Validation, Testing, and Debugging																																
	Checkpoint															+		777	,,,,	,,,,,,				+									
8	Investigating Literature for Body Surface Maps																	\mathscr{D}			V,	١,	,,,										
	Construction of Body Surface Map																				1		W	V	١.,								
	Verification of Technique with Dr. Lardo and Fady																							W		Ž.,,							
	Checkpoint																										1						
	Investigating Literature for Inverse Solution																																
	Discussion of Technique to Create Inverse Solution																																
4	Construction of Inverse Solution Map																																
	Verification of Technique with Dr. Lardo and Fady						_			40									usi-A												//// ,		
	Checkpoint																																-92
2	Abstract																				1		Ž.,										
	Paper																				1						Z						
9	Poster Preparation																																Ø.,,
	Poster Presentation																					8											

Deliverables

OLD

Minimum

- Semi-automatically pre-processing 120lead ECG data
- Automatically detecting fiducial points
- Calculating the sum absolute QRST integral
- Averaging the sum absolute QRST integral for each lead

Expected

 In addition to above, constructing a body surface map of the sum absolute QRST integral

Maximum

 In addition to above, constructing a map of the heart using the inverse solution

NEW

Minimum

- Semi-automatically pre-processing 120lead ECG data
- Automatically detecting fiducial points
- Calculating the sum absolute QRST integral
- Averaging the sum absolute QRST integral for each lead
- In addition to above, constructing a body surface map of the sum absolute QRST integral

Expected

1 In addition to above, constructing a map of the heart using the inverse solution

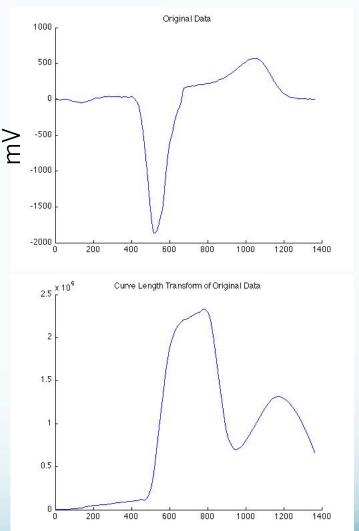
Maximum

- Abstract to Heart Failure Society
- Paper

Technical Approach:

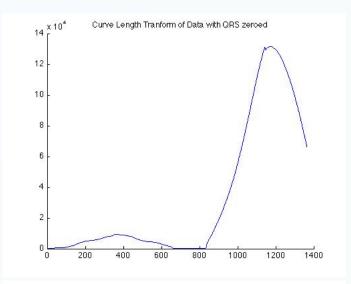
- Borrowed heavily from Zong's Computers in Cardiology (2003 and 2006)
- 2003 algorithm (for QRS detection):
 - Tested against MIT-BIH Arrhythmia database
 - Sensitivity of 99.65 %
 - Accuracy of 99.77%

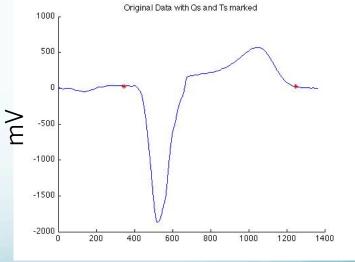
Zong W, Moody B, Jiang D. A Robust Open-source Algorithm to Detect Onset and Duration of QRS Complexes. Computers in Cardiology 2003;30:737-740


Low-pass filter

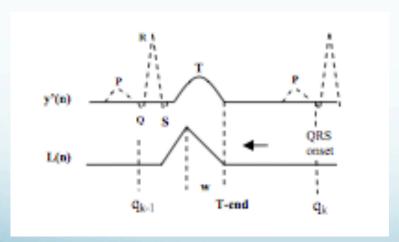
- Ideal band-pass filter is 5-15 Hz
- Only low-pass filter necessary
 - Curve length suppresses very low frequency
- Difference equation (for low-pass filter):
- y(n) = 2y(n-1) y(n-2) + x(n)-2x(n-5) + x(n-10)

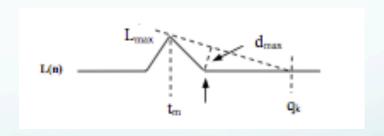
Curve-length Transformation


- Window for transform ≈ QRS width
- QRS should yield maximal curve length


$$L(w,i) = \sum_{k=i-w}^{i} \sqrt{\Delta t^2 + \Delta y_k^2}$$

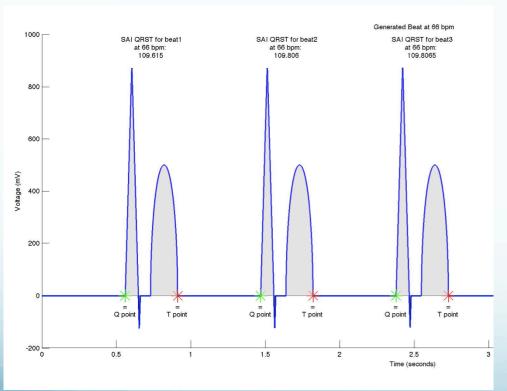
Finding Q and S

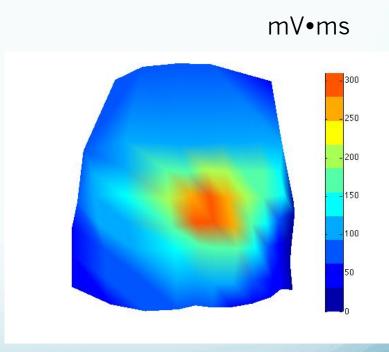

- When LT crosses threshold (t_i)
- Search backwards 125ms min LT (L_{min})
- Search forwards 125ms max LT (L_{max})
- $L_{diff} = L_{max} L_{min}$
- Backwards until $Q_{si} = L_{min} + L_{diff} / 100$
- Forwards until $S_{si} = L_{max} L_{diff}/20$
- Adjustment of -20/+20 samples for beginning/end
- 500 ms "eye-closing" period



End of T-search

- Currently working on it
- Old method of zeroing out QRS and feeding the ECG did not work
- New method:





Zong W, Saeed M, Heldt T, America N, Manor B. A QT Interval Detection Algorithm Based on ECG Curve Length Transform Materials and methods. Computers in Cardiology 2006:377-380.

SAI QRST and Body Surface Mapping

 Based on the detected Q and T points calculating the integral is pretty rudimentary

Remaining Work

- Debugging the T-wave detection
- Validation of results
- Intracardiac Mapping

Dependencies

- IRB Approval
 - Mentors need IRB approval to release data
 - Status: Resolved
- Data Source
 - See above
 - Status: Resolved
- Weekly support meetings with Dr. Tereshchenko
 - Assistance with first two stages of project
 - Status: Resolved
- Packages to help solve the inverse problem and create body surface and heart maps
 - Turned out to just be a bunch of plotting features in MATLAB
 - Status: Resolved
- Meetings with Dr. Lardo or Fady for help with constructing body surface and heart maps
 - Fady will be primary contact and provide assistance with constructing these maps
 - Status: Resolved

Updated Goals

- Same as before
 - Automatically detecting fiducial points
 - Calculating sum absolute and native integrals of QRST interval
 - Averaging the sum absolute and native integrals for each lead
 - Constructing body surface map
 - Constructing inverse heart map
- New Goals
 - Preliminary Data and Abstract to Heart Failure Society (April 11th)
 - Paper about what we learned about SAI QRST and lead placement (TBD)

Management Plan

- Everything remains the same as planned
 - Mentors:
 - Weekly Meetings with Dr. Tereshchenko: Fridays 3-4:30pm
 - Dr. Lardo as needed (most likely not)
 - Fady Dawoud as needed
 - Markus and Sindhoora: working together on all aspects of the project

References

Remains the same as before

- 1. Ghosh S, Silva JN a, Canham RM, et al. Electrophysiologic substrate and intraventricular left ventricular dyssynchrony in nonischemic heart failure patients undergoing cardiac resynchronization therapy. Heart rhythm: the official journal of the Heart Rhythm Society 2011;8(5):692-9.
- 2. Ambroggi LD, Corlan AD. Body Surface Potential Mapping. In: Comprehensive Electrocardiology., 2011:1376-1413.
- 3. Rudy Y. Cardiac repolarization: Insights from mathematical modeling and electrocardiographic imaging (ECGI). HRTHM 2009;6(11):S49-S55.
- 4. Wang Y, Cuculich PS, Zhang J, Desouza KA, Smith TW, Rudy Y. Noninvasive Electroanatomic Mapping of Human Ventricular Arrhythmias with Electrocardiographic Imaging (ECGI). 2011;84.
- 5. Tereshchenko LG, Cheng A, Fetics BJ, et al. A new electrocardiogram marker to identify patients at low risk for ventricular tachyarrhythmias: sum magnitude of the absolute. Journal of Electrocardiology 2011;44(2):208-216.
- 6. Tereshchenko LG, Cheng A, Fetics BJ, et al. Ventricular arrhythmia is predicted by sum absolute QRST integral but not by QRS width. Journal of Electrocardiology 2010;43(6):548-552.
- 7. Sornmo L, Laguna P. ELECTROCARDIOGRAM (ECG) SIGNAL PROCESSING. Wiley Encyclopedia of Biomedical Engineering 2006:1-16.
- 8. Zong W, Saeed M, Heldt T, America N, Manor B. A QT Interval Detection Algorithm Based on ECG Curve Length Transform Materials and methods. Computers in Cardiology 2006:377-380.
- Zong W, Moody B, Jiang D. A Robust Open-source Algorithm to Detect Onset and Duration of QRS Complexes. Computers in Cardiology 2003;30:737-740.

Questions?