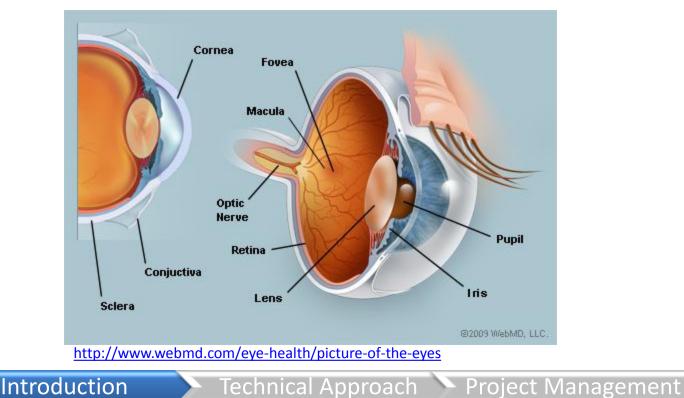


Visual Tracking of Surgical Tools in Retinal Surgery using Particle Filtering

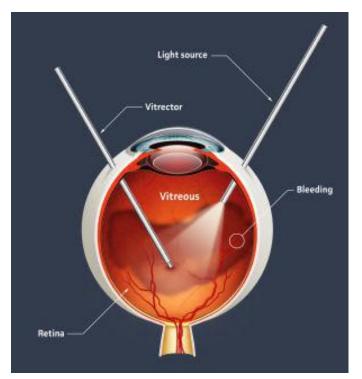
Group 14 William Yang and David Li Mentor: Dr. Rogerio Richa


- Introduction
 - Background
 - Project Goals
- Technical Approach
- Project Management
 - Deliverables & Milestones, Timeline, Dependencies
 - Assigned Responsibilities, Management Plan

Vitreoretinal Surgery

• Affects retina, macula, and vitreous fluid

Vitreoretinal Surgery


- Used to treat the following
 - Macular degeneration
 - Retinal detachmentDiabetic retinopathy
- Complications

ERC | CISST

- Retina is very fragile
- Indirect visualization
- Physiological tremor

Introduction

Lack of tactile feedback

http://www.eyedoctorguide.com/eye_problems/vitreoretinal_surgery_retina.html

Technical Approach 🔉 Project Management

Vitreoretinal Surgery

- Many tools to help surgeons with hand tremor
 - Microsurgical robot
 - Intraoperative data acquisition
 - Force transduction sensors
 - Optical coherence tomography (OCT) retinal scans
- Goal is to help surgeons with indirect visualization

Indirect Visualization

- Many limitations that hinder identification and localization of surgical targets
 - Field and Clarity of view
 - Depth perception
 - Illumination
- Long operating times and risks of surgical error

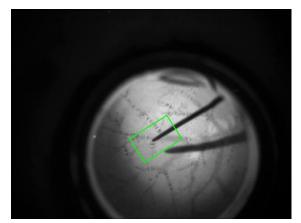
Project Goals

- Goal: Develop a direct visual tracking method for retinal surgical tools using particle filtering and mutual information
- Benefits of implementing a particle filter
 - Stochastic optimization method
 - Can be computed in parallel for speed
 - Computationally efficient
 - Robust

Project Management

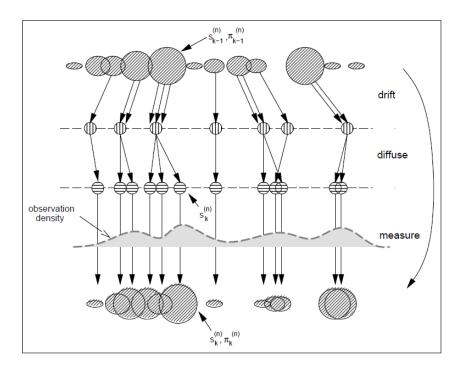
Technical Approach

- Direct Visual Tracking Method
 - Mutual Information
 - Particle Filter
- CISST
- GPU
- Microsurgical Workstation
- Error Analysis



Mutual Information

- Template registration
- Why not SSD or NCC?
- 4 DOF model
- $$\begin{split} h(I) &= -sum_{r}[p_{I}(r) \log(p_{I}(r))] \\ h(I, I*) &= -sum_{r,t}[p_{II*}(r, t) \\ &* \log(p_{II*}(r, t))] \\ MI(I, I*) &= h(I) + h(I*) h(I, I*) \end{split}$$



Particle Filter

- "Condensation"
- Avoid local minima in gradient descent
- Supports alternative hypotheses
- Iterative: calculate weights, resample

Technical Approach

- Parallel evaluation of particles
- Higher frame rate
- Increased robustness

Project Management

Error Analysis

- Usage of first fully annotated and freely available image data set for tool detection in *in vivo* retinal microsurgery
- Tool Detection using Mutual Information
 - Evaluation on entire test set after validating on validation set
 - Correct predictions are within 10 pixels of true location for both
 (A) and (B)
- Tool Tracking using Particle Filtering
 - Evaluation on video sequences
 - Failed whenever true position of (B) is greater than some threshold σ, re-initialized using ground truth to continue analysis

Deliverables

Minimum

- OpenCV demo of tool tracking using mutual information and particle filtering (offline video)
- Documentation of code

Expected

(including Minimum)

- CISST code running on surgical platform (online)
- Documentation of code
- Poster and paper

Maximum

(including Expected)

- GPU implementation
- Documentation of code

Milestones

Minimum

- Milestone 1: Particle filter with SSD
- Milestone 2: Mutual information similarity measure

Expected

 Milestone 3: Port algorithm to CISST library

Technical Approach

Maximum

Milestone 4: GPU or other parallel implementation added

Project Management

Timeline

Technical Approach

- 2/15: Review literature on PF/condensation DONE
- 2/22: Set up OpenCV dev environment DONE
- 3/7: Milestone 1 (basic PF) achieved
- 3/14: Milestone 2 (PF+MI) achieved
- 3/28: Set up CISST dev environment
- 4/4: Milestone 3 (port to CISST) achieved
- 4/11: Review literature on use of GPU/CUDA
- 4/18: Milestone 4 (GPU) achieved
- 4/25: Clean up and refine on-going documentation
- 5/2: Prepare functional demo, draft paper and poster
- 5/9: Poster complete and printed

Introduction

Project Management

Introduction

Project Management

Timeline

	2/8	2/15	2/22	2/29	3/7	3/14	3/21	3/28	4/4	4/11	4/18	4/25	5/2	5/9
Milestone 1: Basic Particle Filter														
Review literature on PF/Condensation														
Set up OpenCV development environment														
Implement a basic particle filter (PF)														
Milestone 2: Implement Mutual Information														
Implement mutual information (MI) in our PF														
Prepare demo using offline video														
Milestone 3: Port To CISST														
Set up CISST development environment														
Port PF with MI into CISST														
Prepare demo using online video (no GPU)														
Milestone 4: Utilize GPU														
Review literature on use of GPU/CUDA														
Implement GPU/parallel processing of particles										_				
Presentation														
Prepare functional demo, draft paper and poster														
Poster complete and printed														
Constant Activities														
Clean up existing code														
Document code														

Technical Approach

Assigned Responsibilities

- Tentative division
 - Primary coder codes main implementation while partner checks code for errors and suggests improvements
- David Li •
 - Particle filter implementation
 - Porting OpenCV implementation into CISST
- William Yang
 - Mutual information
 - GPU/Parallel processing implementation
- Universal responsibilities •

Introduction

- Documentation
- Demo, Draft paper, and Presentation

Project Management

Dependencies

- Development environment for Milestones 1 and 2
 - Resolved (Visual Studio/OpenCV)
- Development environment for Milestones 3 and 4
 - Will work with Rogerio (CISST libraries)
- Access to CUDA-enabled GPU for Milestone 5
 - Resolved for offline development; will work with Rogerio for online
- J-Card access to robotorium
 - Resolved
- Use of microretinal surgery workstation
 - Will need to schedule when ready
 - If not accessible, will work on pre-recorded data

Management Plan

- Weekly:
 - Meetings with Rogerio on Wednesdays
 - Reassessment of timeline
- Continuous:
 - Programming and peer code review (source code revision control)

Technical Approach

- Meet as needed to discuss and test
- Documentation of code

Project Management

Reading List

- Balicki, M., Han, J., Iordachita, I., Gehlbach, P., Handa, J., Taylor, R., and Kang, J. (2009). Single Fiber Optical Coherence Tomography Microsurgical Instruments for Computer and Robot-Assisted Retinal Surgery. *MICCAI* 2009, 108-115
- Dame, A. and Marchand, E. (2010). Accurate real-time tracking using mutual information. *IEEE Int. Symp. on Mixed and Augmented Reality, ISMAR'10,* 47-56.
- Isard, M. and Blake, A. (1998). Condensation conditional density propagation for visual tracking. *Int. Journal of Computer Vision*, 29, 5-28.
- Richa, R. et al. (2012). An Evaluation Framework for in vivo Microretinal Tool Detection and Tracking. *MICCAI*

Technical Approach

• Richa, R. et al. (2012). Hybrid SLAM for Intra-operative Information Augmentation in Retinal Surgery. *MICCAI*

Questions?