
Matlab Interface for the CISST Libraries

Final Report

Group 16

Team Member: Zachary Zhou

Mentor: Anton Deguet

Background, Aims, Significance:

“The cisst package is a collection of libraries designed to ease the development of computer

assisted intervention systems. The Surgical Assistant Workstation (SAW) is a platform that

combines robotics, stereo vision, and intraoperative imaging (e.g., ultrasound) to enhance a

surgeon's capabilities. The SAW package therefore consists of implemented components (e.g.,

interfaces to many of the devices used for computer-integrated surgery) as well as reusable

applications.”

Although the cisst library is a very powerful tool utilized in many of the medical robots in this

lab, the entire library is written in C++. As a result, one requires a sufficient understanding of

C++ in order to fully utilize the library. However, not necessarily all of the researchers who

would like the use the cisst libraries are proficient in the C++ language.

In order to make the cisst package more accessible, it would be beneficial to port the library onto

a different language. For example, MATLAB happens to be a popular language that is fairly easy

to learn and utilize.

There are several advantages to utilizing MATLAB over C++. First of all, the MATLAB

package includes many numerical methods for matrix manipulation and mathematical interfaces,

making it a powerful package for reducing and analyzing data. In addition, MATLAB uses very

loose type definitions which, in addition the command console, makes it very user friendly.

Finally, researchers often reduce data acquired through the cisst libraries on MATLAB.

Overview of Goals:

Creation of a general purpose dynamic wrapper that will allow the use of the cisst packages from

MATLAB. A breakdown of the goals are listed below:

 General MATLAB wrapper for the cisst classes

 Utilize CMake to create the plug-in library

 Dynamically load cisst components onto MATLAB

 Handle data manipulation between C++ and MATLAB

Technical Approach:

In order to keep the wrapper as dynamic as possible, we chose to utilize MATLAB’s ability to

load dynamic libraries into the MATLAB environment (loadlibary) over MATLAB’s compiled

mex files. Utilizing shared libraries offers several advantages over mex files. First of all, MEX

requires all C source code to be recompiled every time in order for MATLAB to be able to

access the C libraries. Also, there is only one point of entry for MEX files: the mexfunction. This

severely limits our MATLAB calls to C functions and requires significant amounts of string

manipulation in order to correctly work. Finally, objects created in MEX calls do not always

remain after the mexfunction returns. Often, variables are collected by MATLAB’s garbage

collector.

For this wrapper, we created a branch from the cisst trunk. After which, we added several C

functions and MATLAB script files in order to facilitate the wrapping the library. Once compiled

ultilizing CMAKE, there are two files which MATLAB is concerned with: cisstMatlab.h and

cisstMatlab.dylib. cisstMatlab.dylib is the compiled dynamic library which contains the cisst

source and additional C functions to be loaded onto MATLAB. cisstMatlab.h identifies which C

functions MATLAB can directly interact with.

After the dynamic library is created, the cisst wrapper can be loaded onto the MATLAB interface

using a call to loadlibrary from the MATLAB environment.

We decided to separate calls from MATLAB to C to be handled by two main C files:

creatComponent.cpp and callFunction.cpp.

A call to create component will result in an object of the desired type being created on the C side,

and a dynamic prop wrapping the object to be created on the MATLAB environment. Each

object created in the MATLAB environment is a dynamic_prop. A dynamic_prop is a MATLAB

type which mimics a class definition. However, there are several advantages in using

dynamic_prop’s over classes. First of all, we are able to define props on the fly and add which

ever components we chose to it. Secondly, the creation of MATLAB classes requires that a file

be created in the MATLAB working directory. Utilizing dynamic_props will allow us to not

have to create a MATLAB class file every time new object is created.

The resultant dynamic_prop which is returned to the MATLAB environment is mostly an empty

class. The prop itself corresponds to the component which was created, subcomponents and

interfaces are attached as dynamic props to the main component.

Function calls are also stored as dynamic_props under the main component. However, the value

for function calls are not empty. Instead, they are anonymous MATLAB functions which will

call the C library and pass arguments to the C side. Each function prop holds the pointer to the

mirror function on the C side. A function dynamic prop will general be defined as such:

 Function= @()calllib(‘libcisstMatlab’,’mtlCallFunction’, -function pointer-, args)

This allows us to call from the MATLAB side:

Result=ComponentA.interface1.DoSomething();

Also, when passing arguments from C to MATLAB, we had to wrap matricies/arrays into/from

MATLAB. To do this, we would wrap arguments from C to MATLAB as mexArrays. When

passing from MATLAB to C, we wrapped as mtsVector types.

This method of wrapping allows us to create and wrap cisst objects onto the MATLAB interface

without having to output dummy files to support class/function declarations in the MATLAB

interface.

Results:

We managed to create a MATLAB wrapper for the cisst libraries with partial functionality. In

addition, there are several MATLAB scripts which will facilitate user’s interactions with the

wrapper.

After the library is compiled, the user will find a bash script which will set the directory of the

MATLAB wrapper in the kernel. At this point, the user should run MATLAB directly from the

kernel (open –a “MATAB path”).

In the MATLAB interface, the user is able to load and unload the cisst wrapper using the

provided mtlLoad and mtlUnload functions. These functions will find the cisst directory and load

the cisst-MATLAB library for the user.

Also, the creation of components has been facilitated with the createComponent function. With a

call to create component, the user can create cisst objects without having knowledge of how to

use MATLAB’s calllib function.

Conclusion:

Overall, the project was fairly successful. We were able to meet all our minimum and most of the

expected deliverables by the completion of the project. We were able to create a working

MATLAB wrapper which could call methods from the cisst libraries. However, we were unable

to dynamically load onto MATLAB a list of components/interfaces to be created. As a result, the

creations of components had to be hard coded. In the final version, we chose to hard code the

component which was created and the interfaces/functions which populated the component.

One factor which limited the progress of this project was that that we had initially experimented

with using both MEX functions and MATLAB class objects to wrap the cisst libraries. After it

was decided to use dynamic_props to give the wrapper a feel like the python wrapper, a lot of

code had to be scrapped and re-written.

Deliverables met:

In the current state of this project, we have met all minimum deliverables and most expected

deliverables. The wrapper is able to load components onto MATLAB without the need of a

configuration file. In addition, the library can dynamically load the cisst libraries onto

MATLAB. We were able to support the conversion of basic types and simple vectors/matrices to

MATLAB. In addition, we were able to population the MATLAB object with interfaces and

commands. We were also able to create MATLAB object wrappers with simple string names.

Future Work:

One primary concern is to remove the hard coding of component creation and population. To do

this, an improved way of passing component values from C to MATLAB must be created.

Also, we need to allow for all functions from the cisst libraries to be called. Not simply the ones

which are hard coded in. This is simply a matter of populating the list of functions/interfaces to

the MATLAB side as the current functions are simply wrappers for functions pointers with

support for data type conversion.

In addition, a way must be found to create pointer types in the MATLAB environment.

Currently, we are passing strings to and from the C side and using reinterpret_cast to extract the

function pointer. However, we would like to be able to create a pointer to a location in memory

in MATLAB.

Optimally, we would like to ensure that the library compiles and loads on different operating

systems. The library was created on OSX, however we would like to ensure that it performs

correctly on Windows and other environments.

Management Summary

I had meetings with Anton when we needed to make changes to the code or to go over significant

portions of the code. Otherwise, I updated Anton with my progress using email and a SVN

repository was created to help with the wrapper.

Reading List

 Vincent Chu, Ghassan Hamarneh “MATLAB-ITK Interface for Medical Image Filtering,

Segmentation, and Registration”.

<www.cs.sfu.ca/~hamarneh/ecopy/medical_showcase2005a.pdf>

References

 https://trac.lcsr.jhu.edu/cisst

 https://trac.lcsr.jhu.edu/cisst/wiki/cisstMultiTaskTutorial

 http://www.mathworks.com/support/technotes/1600/1605.html

 http://www.cmake.org/cmake/resources/resources.html

 http://www.mathworks.com/support/tech-notes/1600/1605.html

http://www.cmake.org/cmake/resources/resources.html
http://www.mathworks.com/support/tech-notes/1600/1605.html

