
MATLAB interface for cisst
libraries

Group 16

Zachary Zhou

Mentor: Anton Deguetz

Summary

• Goal

– Create cisst wrapper in MATLAB for ease of access
to cisst libraries / data manipulation

– Automate compilation of library with Cmake

– Handle passing data from C/MATLAB

 Previous Approach

• Compile cisst C source code -> MEX files

• Obtain list of functions

• Dynamically generate MATLAB classes to
handle cisst interface

• Handle sending of data between C/MATLAB

Problems with Old Approach

• MEX issues

– Requires adding additional code into C source
code

• cisst is stable, should not directly modify class files

– Only one way to access C code:

• mexFunction

• Very limited applications
– Would require a lot of string manipulation to achieve desired

results

New Approach

• Utilizes C Libraries
– Uses MATLAB’s callLib/loadLibary functionality

• Wrapping classes:
– Use pointers/reinterpret_cast

– Generate MATLAB object in C

• Passing Data
– Basic types are simple

– Use wrapped classes to pass composite types

Passing Data from MATLAB/C

• Basic types

– Int, double, float, String

• No problem, can be passed as is

– Matrices/arrays

• Create a MxArray object in C pass to MATLAB

• Receive as MxArray type, convert into C array

Passing Matrices

• Matricies:
– Use a MxArray:

• Have first line (index 0,0) be the type of arguments in
String form

• Remainder of MxArray corresponds directly to C array

– MATLAB -> C
• Requires some string manipulation

• Read in as MxArray

• Create C array based on argument type

• Pass contents of MxArray to C array

Passing Composite Types

• Using this approach, we can simply pass
composite types (objects) as the pointer to
the object in C

• Use reinterpret_cast to retrieve object from
MATLAB

• Issue:
– Error occurs currently, related to the wrapping of

classes

– On hold until class wrapper portion is resolved

Wrapping Classes (C-> Matlab)

• Use a simple C script to wrap classes and pass
them to MATLAB

• Script will create an instance of the C object
and pass the pointer to the object to MATLAB

• Script will generate MATLAB code (in string
form) and pass to MATLAB

– Ultilize the MATLAB evaluate() function to pass
code to MATLAB

Current Model of C script

• Object to wrap: ComponentA

– ComponentA is defined in cisst

– ComponentA.h/ComponentA.cpp already defined

• C script

– Generate an object of type Component A

• Generate object of A, retrieve pointer to the object

Current Model (Continued)

String Wrapper(String className, ComponentA* pointer){
 String[] functionPrototypes= from ComponentA
 String matlabCode=
 “classdef “+className+”/n
 properties
 Cobject= pointer;

 methods
 //***** List of functions *****//

 end
 end”

 return matlabCode;
}

Current Model (Continued)

• Pseudo code of a function call form matlab (string
form)
– function return_types=function 1{
 float funcPointer= function1 pointer

callLib(“cisstLibraryName”,”interpret”,functionPointer, object
pointer, args);

}

• Interpret function(function pointer, object
pointer, args){
 calls function in C on the object using passed
 arguments

MATLAB side

• Load the library
– [notfound,warnings]loadlibary(‘lib.dylib’)

– String code =Calllib(‘lib’,’wrapper’,arguments)

– evaluate (code)

• Utilizing the object in MATLAB
– Class is already created from calling C method

– Simply use as follows:
• ComponentA.function1();

– Calls C equivalent, and executes on C side

Current Issues

• Because we are using evaluate(String) to
create an object

– When we try to create multiple objects of the
same class, we get an error in MATLAB:

• The class is already defined

Solutions

• Add in a separate C script to initialize the object

– One script for passing class definition to MATLAB

– One script to check if class def was already passed, if
so just call the script to initialize the object

• Use static types

• Does MATLAB have a class type that can be
passed to C?

– mxArray exists

– Is there a mxClass or mxStruct to use?

Dependencies

• Find a way to generate 2 instances of same
class in MATLAB

– Error when trying to create 2 instances: class is
already defined in matlab, attempts to define
twice

Deliverables

• Minimum:
– Be able to load a single component without configuration file onto MATLAB
– Get dynamic loading to work
– Write basic data conversion methods for native types

• Expected:
– Utilize CMake to built MATLAB plug-in library
– Create MATLAB object on the fly with string names
– Populate MATLAB with component interfaces, names, and commands
– Conversion methods for vectors and matrices
– Proper documentation of completed portions

• Maximum
– Conversion methods for composite types (cisstDataGenerator)
– Test on multiple machines from MATLAB
– Try running MATLAB wrapper from command-line
– Extensive documentation/readme

Milestones

• Explore C/MATLAB interfaces
– Complete by: March 1st
– Status: in progress

• Dynamic loading working on cisst
– Complete by: April 15th

• Data Conversion (basic)
– Completed April 6th

• Data Conversion (composite)
– Complete by: April 15th

• Use CMake to build plugin library
– Completed

• Composite objects and populate MATLABinterface with interface
names/components
– Complete by: May 10th

• Documentation:
– Complete by: May 10th

Timeline
Deliverables 20-Feb 1-Mar 9-Mar 16-Mar 23-Mar 2-Apr 6-Apr 13-Apr 20-Apr 27-Apr 4-May 10-May

Read/understand cisst
library

 Explore MATLAB/C
interfaces

 Call a C method from
MATLAB

Call MATLAB from C

Pass Variables between
C/MATLAB

Build plugin library

Load single component
on MATLAB

Conversion of Basic
Data Types

Conversion of user
defined types
(cisstDataGenerator)

Software
Documentation

Final Report

In progress

Complete

References

• https://trac.lcsr.jhu.edu/cisst

• https://trac.lcsr.jhu.edu/cisst/wiki/cisstMultiTa
skTutorial

• http://www.mathworks.com/support/tech-
notes/1600/1605.html

• http://www.cmake.org/cmake/resources/reso
urces.html

Thank you
Questions?

