
Matlab Interface for the CISST Libraries

Group 16

Team Members: Zachary Zhou

Mentors: Anton Deguet

Background, Aims, Significance:

“The cisst package is a collection of libraries designed to ease the development of computer assisted

intervention systems. The Surgical Assistant Workstation (SAW) is a platform that combines robotics,

stereo vision, and intraoperative imaging (e.g., ultrasound) to enhance a surgeon's capabilities. The

SAW package therefore consists of implemented components (e.g., interfaces to many of the devices

used for computer-integrated surgery) as well as reusable applications.”

Although the cisst library is a very powerful tool utilized in many of the medical robots in this lab, the

entire library is written in C++. As a result, one requires a sufficient understanding of C++ in order to

fully utilize the library. However, not necessarily all of the researchers who would like the use the cisst

libraries are proficient in the C++ language.

In order to make the cisst package more accessible, it would be beneficial to port the library onto a

different language. For example, MATLAB happens to be a popular language that is fairly easy to learn

and utilize.

There are several advantages to utilizing MATLAB over C++. First of all, the MATLAB package includes

many numerical methods for matrix manipulation and mathematical interfaces, making it a powerful

package for reducing and analyzing data. In addition, MATLAB uses very loose type definitions which,

in addition the command console, makes it very user friendly. Finally, researchers often reduce data

acquired through the cisst libraries on MATLAB.

Overview of Goals:

Creation of a general purpose dynamic wrapper that will allow the use of the cisst packages from

MATLAB. A breakdown of the goals are listed below:

 General MATLAB wrapper for the cisst classes

 Utilize CMake to create the plug-in library

 Dynamically load cisst components onto MATLAB

 Handle data manipulation between C++ and MATLAB

Technical Approach:

One approach to porting the cisst libraries would be to hard code each component into MATLAB. For

obvious reasons, this approach is not adequate given the size and the changing nature of the cisst

package.

Another approach would be to create a code generate which would convert C/C++ functions to

MATLAB. However, this approach is very unstable and would potentially fail at multiple locations. In

addition, every time the source code is changed on the cisst library, it would need to be generated

with every update.

We know that MATLAB is capable of utilizing C/C++ libraries up to some degree due to the MEX

capabilities. Thus, we are able to call C functions from MATLAB. The question then how will we know

the names of the functions we would like to call form the cisst package.

Fortunately, all classes in the cisst libraries have the ability to identify all the methods in its own class

and return the names of these methods in string form. Using the names of these functions, we hope

to dynamically create MATLAB classes which will “wrap” the cisst classes.

Using the names of the classes/methods, we should be able to create basic MATLAB objects that

simply call their corresponding methods in C++. By taking all these functions names, we should be

able to dynamically generate

One issue that we will encounter is that MATLAB and C do not necessarily store their variables in

memory the same way. As a result, we will have to code methods which will convert objects from C to

MATLAB. In addition, as MATLAB is made for matrix manipulation, we should convert user defined

types into matrix form when sending them from C to MATLAB (and vice versa).

We expect to be able to create C objects that may be called one of two ways. In the most basic case,

we will simply create general MATLAB wrapper function that will take in string inputs and call the

corresponding C method (ex: pos = cisstMatlab.Execute("daVinci", "PSM1", GetPositionCartesian");).

However, we would prefer to dynamically create objects in MATLAB using the string names returned

by cisst (ex: pos = daVinci.PSM1.GetPositionCartesian();). This will be done in a matter similar to

using function pointers in C.

Deliverables:

Minimum:

 Be able to load a single component without configuration file onto MATLAB

 Get dynamic loading to work

 Write basic data conversion methods for native types

Expected:

 Utilize CMake to built MATLAB plug-in library

 Create MATLAB object on the fly with string names

 Populate MATLAB with component interfaces, names, and commands

 Conversion methods for vectors and matrices

 Proper documentation of completed portions

Maximum

 Conversion methods for composite types (cisstDataGenerator)

 Test on multiple machines from MATLAB

 Try running MATLAB wrapper from command-line

 Extensive documentation/readme

Milestones:

 Read/understand cisst library (esp. cisstMultiTask)

o Expected date: 2/22/12

o Status: Complete

 Explore MATLAB/C interfaces

o Expected date: 3/1/12

o Status: pending

 Call a C method from MATLAB

o Expected date: 2/28/12

o Status: complete

 Call a MATLAB method from C

o Expected Date: 4/1/12

o Status: pending

 Pass variables between C/MATLAB

o Expected Date: 4/2/12

o Status: pending

 Utilize CMake to create library

o Expected Date: 4/27/12

 Dynamically load component

o Expected Date: 4/2/12

 Load single component on Matlab

o Expected Date: 4/2/12

 Data Conversion of Basic Types

o Expected Date: 3/1/12

 Data Conversion of Hybrid Tasks

o Expected Date: 3/1/12

Timeline:

Deliverables

20-

Feb

1-

Mar

9-

Mar

16-

Mar

23-

Mar

2-

Apr

6-

Apr

13-

Apr

20-

Apr

27-

Apr

4-

May

10-

May

Read/understand

cisst library

 Explore MATLAB/C

interfaces

 Call a C method

from MATLAB

Call MATLAB from C

Pass Variables

between C/MATLAB

Dynamically create

cisst objects

Load single

component on

MATLAB

Conversion of Basic

Data Types

Conversion of user

defined types

(cisstDataGenerator)

Software

Documentation

Final Report

In progress

 Complete

Management:

 Work on project several hours a day (~30-40 hours a week)

 Maintain regular email contact with Anton

 Meet on a bi-weekly basis to go over progress

References:

• https://trac.lcsr.jhu.edu/cisst

• https://trac.lcsr.jhu.edu/cisst/wiki/cisstMultiTaskTutorial

• http://www.mathworks.com/support/tech-notes/1600/1605.html

• http://www.cmake.org/cmake/resources/resources.html

