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Background 

• What is cisst? 
– “The cisst package is a collection of libraries designed 

to ease the development of computer assisted 
intervention systems. The Surgical Assistant 
Workstation (SAW) is a platform that combines 
robotics, stereo vision, and intraoperative imaging 
(e.g., ultrasound) to enhance a surgeon's capabilities. 
The SAW package therefore consists of implemented 
components (e.g., interfaces to many of the devices 
used for computer-integrated surgery) as well as 
reusable applications.” 

        https://trac.lcsr.jhu.edu/cisst 
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What is cisst used for? 
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Why would we want to change cisst? 

• Written in C/C++ 
– Not everyone is proficient in C 

– Takes time to set up the cisst libraries 

– Requires some understanding of data 
types/structure 
• Ex: cisstVector 
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Why MATLAB 

• User friendly 

• No need to explicitly declare data types 

• Good support for numerical methods 

• Simple matrix manipulation 

• Command console to try out code 
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Project Goals 

• MATLAB wrapper for cisst libraries 

– Be able to create cisst objects and manipulate 
them through MATLAB  

• Utilize CMake to create plug-in library 

• Handle data manipulation between C/MATLAB 
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Technical Approach 

• Traditional methods: 

– Hard code from C to MATLAB 

• Tedious 

• Need to reflect changes to cisst SVN 

– Code generator 

• Potentially buggy 

• Needs to be updated  
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MEX files 

• MATLAB includes the capability to call C 
methods via MEX files 

• Requires recompiling C source code with the 
MEX compiler to generate a MEX file 

– Can be automated via CMake 

• How will we know which methods to call? 
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cisst specifics 

• All objects in the cisst library have a function 
which will return all functions in string form 

• Use this function to send the names of all C 
methods to MATLAB 
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Approach 

• Compile cisst C source code -> MEX files 

• Obtain list of functions 

• Dynamically generate MATLAB classes to 
handle cisst interface 

• Handle sending of data between C/MATLAB 
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Expected usage 

• Basic case: 

– Send string names through a generic function to 
call C methods 

• Ex: pos = cisstMatlab.Execute("daVinci", "PSM1", GetPositionCartesian"); 

• Prefered: 

– Dynamically create object variable 

• Ex: pos = daVinci.PSM1.GetPositionCartesian(); 
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cisstMultiTask  

• Component based framework 

– Need to provide support for required/provided 
interface 

– Handle function objects 

• Potentially allow MATLAB to handle Events 
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Dependencies 

• Regular contact with Anton 

– Resolve by: 2/20/2012 

– Status: Resolved 

• Access/set-up to cisst packages and Cmake 

– Resolve by: 2/22/2012 

– Status: Resolved 
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Deliverables 

• Minimum: 
– Be able to load a single component without configuration file onto MATLAB 
– Get dynamic loading to work 
– Write basic data conversion methods for native types 

• Expected: 
– Utilize CMake to built MATLAB plug-in library 
– Create MATLAB object on the fly with string names 
– Populate MATLAB with component interfaces, names, and commands 
– Conversion methods for vectors and matrices 
– Proper documentation of completed portions 

• Maximum 
– Conversion methods for composite types (cisstDataGenerator) 
– Test on multiple machines from MATLAB 
– Try running MATLAB wrapper from command-line 
– Extensive documentation/readme 
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Milestones 

• Explore C/MATLAB interfaces 
– Complete by: March 1st 
– Status: in progress 

• Dynamic loading working on cisst 
– Complete by: April 6th  

• Data Conversion 
– Complete by: April  6th   

• Use CMake to build plugin library 
– Complete by: May 1st 

• Composite objects and populate MATLABinterface with interface 
names/components 
– Complete by: May 10th  

• Documentation: 
– Complete by: May 10th  
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Timeline 
Deliverables 20-Feb 1-Mar 9-Mar 16-Mar 23-Mar 2-Apr 6-Apr 13-Apr 20-Apr 27-Apr 4-May 10-May 

Read/understand cisst library                          

 Explore MATLAB/C interfaces                         

 Call a C method from MATLAB                         

Call MATLAB from C                         

Pass Variables between 
C/MATLAB                         

Dynamically create cisst objects                         

Load single component on 
MATLAB                         

Conversion of Basic Data Types                         

Conversion of user defined 
types (cisstDataGenerator)                         

Software Documentation                         

Final Report                         

                          

In progress   

Complete   
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Thank you 
Questions? 


