
MATLAB interface for cisst
libraries

Group 16

Zachary Zhou

Anton Deguetz

Outline

• Introduction

– Background, Motivation

• Goals

• Technical Approach

• Project Management

– Deliverables/Milestones

– Timeline

– Dependencies

Background

• What is cisst?
– “The cisst package is a collection of libraries designed

to ease the development of computer assisted
intervention systems. The Surgical Assistant
Workstation (SAW) is a platform that combines
robotics, stereo vision, and intraoperative imaging
(e.g., ultrasound) to enhance a surgeon's capabilities.
The SAW package therefore consists of implemented
components (e.g., interfaces to many of the devices
used for computer-integrated surgery) as well as
reusable applications.”

 https://trac.lcsr.jhu.edu/cisst

Background Goal Approach Management

What is cisst used for?

Background Goal Approach Management

Why would we want to change cisst?

• Written in C/C++
– Not everyone is proficient in C

– Takes time to set up the cisst libraries

– Requires some understanding of data
types/structure
• Ex: cisstVector

Background Goal Approach Management

Why MATLAB

• User friendly

• No need to explicitly declare data types

• Good support for numerical methods

• Simple matrix manipulation

• Command console to try out code

Background Goal Approach Management

Project Goals

• MATLAB wrapper for cisst libraries

– Be able to create cisst objects and manipulate
them through MATLAB

• Utilize CMake to create plug-in library

• Handle data manipulation between C/MATLAB

Background Goal Approach Management

Technical Approach

• Traditional methods:

– Hard code from C to MATLAB

• Tedious

• Need to reflect changes to cisst SVN

– Code generator

• Potentially buggy

• Needs to be updated

Background Goal Approach Management

MEX files

• MATLAB includes the capability to call C
methods via MEX files

• Requires recompiling C source code with the
MEX compiler to generate a MEX file

– Can be automated via CMake

• How will we know which methods to call?

Background Goal Approach Management

cisst specifics

• All objects in the cisst library have a function
which will return all functions in string form

• Use this function to send the names of all C
methods to MATLAB

Background Goal Approach Management

Approach

• Compile cisst C source code -> MEX files

• Obtain list of functions

• Dynamically generate MATLAB classes to
handle cisst interface

• Handle sending of data between C/MATLAB

Background Goal Approach Management

Expected usage

• Basic case:

– Send string names through a generic function to
call C methods

• Ex: pos = cisstMatlab.Execute("daVinci", "PSM1", GetPositionCartesian");

• Prefered:

– Dynamically create object variable

• Ex: pos = daVinci.PSM1.GetPositionCartesian();

Background Goal Approach Management

cisstMultiTask

• Component based framework

– Need to provide support for required/provided
interface

– Handle function objects

• Potentially allow MATLAB to handle Events

Background Goal Approach Management

Dependencies

• Regular contact with Anton

– Resolve by: 2/20/2012

– Status: Resolved

• Access/set-up to cisst packages and Cmake

– Resolve by: 2/22/2012

– Status: Resolved

Background Goal Approach Management

Deliverables

• Minimum:
– Be able to load a single component without configuration file onto MATLAB
– Get dynamic loading to work
– Write basic data conversion methods for native types

• Expected:
– Utilize CMake to built MATLAB plug-in library
– Create MATLAB object on the fly with string names
– Populate MATLAB with component interfaces, names, and commands
– Conversion methods for vectors and matrices
– Proper documentation of completed portions

• Maximum
– Conversion methods for composite types (cisstDataGenerator)
– Test on multiple machines from MATLAB
– Try running MATLAB wrapper from command-line
– Extensive documentation/readme

Background Goal Approach Management

Milestones

• Explore C/MATLAB interfaces
– Complete by: March 1st
– Status: in progress

• Dynamic loading working on cisst
– Complete by: April 6th

• Data Conversion
– Complete by: April 6th

• Use CMake to build plugin library
– Complete by: May 1st

• Composite objects and populate MATLABinterface with interface
names/components
– Complete by: May 10th

• Documentation:
– Complete by: May 10th

Background Goal Approach Management

Timeline
Deliverables 20-Feb 1-Mar 9-Mar 16-Mar 23-Mar 2-Apr 6-Apr 13-Apr 20-Apr 27-Apr 4-May 10-May

Read/understand cisst library

 Explore MATLAB/C interfaces

 Call a C method from MATLAB

Call MATLAB from C

Pass Variables between
C/MATLAB

Dynamically create cisst objects

Load single component on
MATLAB

Conversion of Basic Data Types

Conversion of user defined
types (cisstDataGenerator)

Software Documentation

Final Report

In progress

Complete

Background Goal Approach Management

References

• https://trac.lcsr.jhu.edu/cisst

• https://trac.lcsr.jhu.edu/cisst/wiki/cisstMultiTa
skTutorial

• http://www.mathworks.com/support/tech-
notes/1600/1605.html

• http://www.cmake.org/cmake/resources/reso
urces.html

Thank you
Questions?

