
Group 5 Project Report
Prototype of a Micro-Surgical Tool Tracker

Students: Sue Kulason, Yejin Kim
Mentors: Marcin Balicki, Balazs Vagvolgyi, Russell Taylor

May 13, 2013

Abstract

Ophthalmic surgery consists of a number of delicate procedures that require a level
of accuracy and precision that is difficult to achieve with current methods. Although
robot-assistance can alleviate hand tremor, sucess of these procedures still suffers from
a lack of quantitative information and poor decision making. By providing the position
of a tool with respect to the eye, hospitals can monitor surgical protocol, assess surgical
skill, and provide information for better decision making. An optical tracking system
that provides positional feedback was implemented and tested. Results show that the
detection algorithm must be improved to eliminate outliers, but when the target is
correctly detected, the tracking system is accurate within 2 mm in optimal lighting
conditions.

1 Introduction

According to a study conducted in 2009, ophthalmic surgery has the highest number
of incorrect procedures in the operating room [1]. These procedures suffer from inaccuracy
due to hand tremor, and a lack of quantitative information about the tool in relation to the
eye [3]. Specifically, surgeons currently use a 2-channel microscope to amplify their view of
the patients’ eye, which provides a narrow field of view [3]. The narrow field of view and lack
of quantitative information leads to poor decisions that can result in unwanted collisions.
New robot-assisted surgical methods are being developed to cope with issues in accuracy
due to hand tremor [3]. However, both traditional ophthalmic surgery and robot-assisted
ophthalmic surgery would benefit from positional feedback of the tool in relation to the eye.

Several methods have been proposed to provide positional feedback. One such system
utilizes electromagnetic trackers placed around the operating room to track tool position.

1

Electromagnetic trackers have continuous visibility of markers, do not interfere with the sur-
geon workspace, and have markers with negligible size and weight [4]. However, there are
several key disadvantages to electromagnetic trackers. First, these trackers are sensitive to
metal, which is found in nearly all tools and equipment. Furthermore, it has been shown
that electromagnetic trackers are not as accurate as optical trackers [4]. Although optical
trackers provide high accuracy and are not sensitive to metals, this system also has some
drawbacks. Optical trackers rely on continuous visibility of markers, has potential to inter-
fere with surgeon workspace, and the tool tracking markers tend to add weight to the tools [4].

The goal of this project was to prove that an optical tracking system can calculate
accurate tool position in relation to the eye. The drawbacks of a typical optical tracking
system were eliminated by implementing a system of four cameras to account for occlusion,
and painted tools of negligible additional weight. The aims were to develop a device to
rigidly house four cameras in place without interfering with surgeon workspace, implement
a tracking algorithm to provide accurate positional feedback in real-time, and an evaluation
of the tracking accuracy of this system.

Tool position can be utilized in a variety of ways to improve ophthalmic surgery. It can
monitor surgical protocol to ensure tasks such as lubricating the eye are done periodically.
It can also assess surgical skill, which has been shown to correlate with the number and
type of strokes taken during a procedure [5]. With quantitative information on tool position
with respect to the eye, hazard warnings to improve surgical safety can also be implemented.
Optical tracking is compatible with both standard practices and robot-assisted surgery, and
can also be adapted to other types of microsurgeries. For example, optical tracking could
also prove useful for the insertion of cochlear implants.

2 Technical Approach

2.1 Mechanical Device

The first phase of device design was to determine ideal optical sensor specifications.
The primary specifications taken into account are shown below in Figure 1. Other considera-
tions were type of camera, cost, resolution, and software compatibility. Although IR cameras
would have been ideal for the dark surgical environment, it would require an IR light source
and modification of the tools that went beyond the scope of our proof-of-concept. Therefore,
an RGB camera was chosen.

The camera that was selected was an endoscope camera for $76.98 as shown in Figure
2. The camera had a small, 7 mm camera tip to minimize interference with the surgeon’s
work space, a USB interface that made it easy to connect to tracking software, and an
undetermined field of view as this data was not provided. However, a test of the camera
showed that it had a narrower field of view than expected. At a 7 mm distance, the camera
could see 20 mm by 30 mm. As the tool tip was estimated to be 30mm, it became necessary
to scale the prototype by 1.5 times larger than life. Camera resolution was 640 x 480 pixels,

2

which meant at least 16 pixels could be seen per mm at the desired distance. This was
determined to be reasonable for the purposes of a proof-of-concept.

Figure 1: List of Camera Constraints

Figure 2: Chosen Camera

The next step was to develop stands on which the cameras could be rigidly attached.
It was key for the cameras to stay still once calibrated in order to ensure optimal accuracy of
tracking. To this end, stands with 7 mm diameter clips were printed and tested. These clips
were also utilized in an initial calibration test and placed as shown in Figure 3. However,
unexpected issues with cameras rotating within its case was discovered and may contribute
to the tracking errors discussed later.

Figure 3: Initial Prototype

Figure 4: CAD of Camera Views

The third phase of device design was to determine optimum placement of the four
cameras. In order to provide positional feedback of the tool and trocars, it was necessary to
place cameras in a way that each had a complete view of the eye environment. Constraints
for camera placement include the camera’s field of view, surgeon’s hand motion during opera-
tions, and the shape of the face. Below in Figure 4 is the finalized design of camera placement.

3

Figure 5: Mockup of Device

In order to verify camera place-
ment, a styrofoam face was purchased
and modified to house a silicon eye pro-
vided by Marcin Balicki. Yellow, green,
and red wires were used to represent
trocars and the tool was painted blue.
A mock-up of the final device was de-
signed as shown in Figure 5. The ori-
entations between cameras were changed
to account for the profile of face and
view of the eye environment. More
detailed documentation of the device’s
dimensions can be found in Apendix
A.

Once the mock-up was verified, the next step was to CAD the final device design,
as shown in Figure 6. After some final adjustments, the final device was built as shown in
Figure 7.

Figure 6: CAD of Device

4

Figure 7: Final Device

2.2 Tracking Software

Figure 8: Tracking System Flow ChartThe conceptual approach of opti-
cal tracking has three major steps: multi-
camera calibration, detection, and 3D point
reconstruction. Figure 8 shows the over-
all tracking scheme. First, images are
taken from all four cameras to perform
multi-camera calibration. This is per-
formed offline. Next, new images are
taken with the tool and three trocars
marked visibly in different colors. This
is run through the fast-blob color seg-
mentation algorithm that detects pixel
locations of each color of interest for
each camera view. Finally, the output
from calibration and detection is com-
bined to perform 3D point reconstruction.
The final tool and trocar positions are
printed and drawn in a 3D graphic dis-
play.

Figure 9 is a more detailed view of calibration. Since single camera calibration is
generally more accurate than pair-wise camera calibration, the results from single camera

5

calibration were used to determine intrinsic parameters. For each camera, there is a set
of 20 images that is run through a pipeline to extract grid corners, calibrate, account for
distortion, and optimally calibrate in order to determine the intrinsic parameters. This is a
pipeline provided by Matlab Calibration Toolbox under Example 1.

Figure 9: Calibration Flow Chart For extrinsic parameters, it is nec-
essary to perform pair-wise camera cal-
ibration. In this case, the accuracy
is limited by the shared field of view
where the planar checkerboard can be
placed. Similar to single camera cali-
bration, each set of 20 images must be
run through a pipeline to extract grid
corners, calibrate, account for distortion,
and optimize calibration. These results
were then taken to determine stereo cam-
era calibration, and then the optimal
stereo camera calibration, which deter-
mined intrinsic and extrinsic parameters
for each camera. Only the extrinsic pa-
rameters were used in the tracking algo-
rithm. The pipeline for stereo camera
calibration is provided in detail by Mat-
lab Calibration Toolbox under Example
5.

As described before, the next step in
tracking is detecting the four color markers.
Figure 10 describes the general process of
detection. First, a frame taken from a cam-
era is converted from the RGB color space to
YUV color space. This is because the YUV
color space is more robust to changes in illu-
mination. Next, the image was thresholded

for each color of interest. The ranges of each color were determined by guess and check for
multiple images with varying illumination and camera views. This noisy image is improved
with a series of morphological operators such as dilate, erode, open, and close. Then, using
OpenCV, the connected components were determined from the binary image. The largest
one is assumed to be the marker and the center was calculated using moments. From test
results, it is clear that assuming the largest connected component to be the marker led to
issues when the marker was occluded. Currently the algorithm does not account for instances
when a marker is not present but the color is. The final output from this portion of the
algorithm is the pixel location of the center of each marker.

The detection algorithm was tested by overlaying original RGB images with the color

6

thresholds. Specifically, detection was tested for varying camera views and illumination
settings. Appendix A has information on where these results are stored.

Figure 10: Detection Flow Chart

Figure 11: Color Coded Camera Setup

The final step in the tracking algorithm was the 3D point reconstruction for each
marker, as shown in Figure 12. Each of the 4 pixel location outputs for each marker from
the detection step was transformed to find the distorted pinhole image projection utilizing
the camera matrix calculated during calibration. This point must then be normalized with
the distortion parameters, which were also calculated during calibration. Specifically, there
is no algebraic solution to undistort a point, so two corresponding mesh grids of pixels must
be used to estimate the normalized point. These normalized values represent the slope of
the line from the camera origin to a detected marker center. In order to compare between
cameras, these line equations must be transformed to the same camera space using the ex-
trinsic properties calculated from calibration. We chose to transform everything to the space
of Camera 1, the green camera shown in Figure 11. Next, the goal was to find the point
of intersection between all the lines. However, due to noise there may not be a point of
intersection. Therefore, we chose to look through each pair of lines and find the pair of
points with the shortest distance between the lines through a least squares approach:

7

Slope0 = X1 −X0 (1)

Slope1 = Y1 − Y0 (2)

F = Slope0 × Slope1/
√

(Slope0 · Slope1) (3)

G = F ∗ (Slope0 − Slope1) (4)

A = [Slope0|Slope1] (5)

b = −G ∗ F −X0 + Y0 (6)

[U, S, V t] = svd(A) (7)

x = U t · 1/St · V · b (8)

Point0 = Slope0 ∗ x[0] + X0 (9)

Point1 = Slope1 ∗ x[1] + X1 (10)

Figure 12: 3D Reconstruction Flow ChartOnce the two corresponding points
are found, the average was taken to be
the true location of the marker. This
was repeated for each pair of lines and
an average of the averages was used
to define the final 3D point location.
These four resulting points were put in a
graphic display to provide positional feed-
back.

An unexpected problem arose that
led to modifications in the technical ap-
proach. The cameras were not compati-
ble with image grabbing software available
through Python, OpenCV, or video stream-
ing software such as DivX. Therefore, it be-
came unrealistic to achieve real-time track-
ing. Instead, we chose to opt for offline
tracking of images and videos. However, im-
age and video acquisition through 4 synchro-
nized cameras also proved challenging. The
CISST script for stereo camera viewing was
modified by Balazs Vagvolgyi to stream two
unsynchronized sets of two cameras. Com-
pressed videos depended on DivX, so it was necessary to modify the script to acquire uncom-
pressed videos and use CISSTs video converter for post-processing. The difference between
frame times is not accounted for in our algorithm, although this issue should be minimal for
the slow movements characteristic of ophthalmic surgery.

8

Figure 13: Final Tracking Flow Chart

9

3 Results

3.1 Calibration Test

The purpose of the calibration test was to determine the accuracy of pair-wise calibra-
tion utilized in our tracking algorithm. For each camera, the intrinsic values were compared
between single camera calibration and pair-wise camera calibration. This is because the
limited field of overlapping view is a major factor in calibration error. Accuracy of extrinsic
properties was also examined by comparing differences in designed, measured-by-hand, and
measured-by-calibration extrinsic parameters. Figure 14 shows the results for Camera 4,
whose pair-wise calibration had the smallest field of view and was therefore prone to the
most error. Results for the other three cameras revealed similar results and can be found
in Appendix A. The error in determining the principal point in the x direction was 20.69
pixels which was larger than ideal. Overall the errors were small, suggesting that pair-wise
calibration is a reasonable approach for our tracking project. In fact, many of the errors
found for intrinsic properties of Camera 4 were smaller than other cameras. The biggest
source of error seems to come from Camera 2, whose resolution was visibly worse than the
other three cameras. Other sources of possible error for both types of calibration include
subpixel corner detection error and warping of the planar checkerboard.

Figure 14: Camera 4 Intrinsic Test

Other than the intrinsic results, the extrinsic results of pair-wise calibration were
compared to designed measurements between cameras. There is a possibility of error from
device design to creation that cannot be accounted for. Nonetheless, the extrinsic results give

10

an idea of the milimeter accuracy of this calibration technique. As shown in Figure 15, the
largest error was observed between Camera 2 and Camera 3, which had a large overlapping
field of view but a problem with Camera 2 resolution. The goal of less than 1mm error was
not achieved. This was taken into account when analyzing the results of the tracking system.

Figure 15: Extrinsic Test

3.2 Detection Test

Figure 16: Blue Marker Detection Test

11

The purpose of the detection test was to determine whether colors can be accurately
detected under different illuminations and camera views. Specifically, three sets of four
images under varying illuminations and camera views were examined. The original image
was compared to the initial threshold, image after morphological operations, the contour,
and the location of the detected center. Figure 16 shows an example of a blue marker
detection test. Although these tests were successful, the detection tests did not account for
cases when the markers were occluded. Tracking accuracy evaluation results and a look at
the thresholds show that when a color marker was not present, an incorrect center was still
calculated. This was taken into account when analyzing tracking evaluation results.

3.3 3D Reconstruction Test

The original purpose of the 3D reconstruction test was to determine whether the
tracking algorithm was working properly and efficiently. However, due to several delays in
device building and sharing of Eye Robot 2.1, it was decided to remove most of the 3D re-
construction tests and perform these tests as part of the tracking accuracy evaluation. The
revised 3D reconstruction test was to test the time it took to reconstruct markers from 4
corresponding frames, and to perform a test of the graphic display.

As expected, calling a Matlab function from Python was slow. Specifically, the track-
ing algorithm utilized the Matlab Calibration Toolbox normalize() function to estimate the
normalized image projection from distorted values. Figure 17 shows that detection and 3D
reconstruction of 2 un-normalized markers took an average of 0.2 seconds per frame. 2
normalized markers took 1.76 seconds, and 4 normalized markers took 3.48 seconds. This
is much slower than the .04 seconds per frame collected from the videos. Therefore, the
algorithm currently does not have the capability to perform real-time tracking.

Figure 17: Reconstruction Time Test

The last piece of this project was to display the positional feedback in a useful way.
For four markers, the display shows the center point of each marker in its corresponding
color. It also draws a 20 mm tool from the tool through the correct, pre-defined trocar. A
plane is also shown to convey the orientation of the eye, assuming that the three trocars
define the plane of the eye. Below is a frame representing a test of the graphic output.

12

Figure 18: Graphic Example

3.4 Tracking Accuracy Evaluation

The goal of this project was to track tool tip within 1 mm of accuracy. However, due
to the 3 mm difference in the designed and measured position of Camera 2 with respect to
Camera 3, it became clear that this goal would be unattainable due to calibration errors. Eye
Robot 2.1 was utilized to control translational movement and measure actual displacement.
It is important to note that there may be small errors in tracking accuracy of the Eye Robot.
However, these errors are not on the same order of magnitude as the calibration errors, and
therefore, were excluded from consideration.

In order to evaluate tracking accuracy, the original plan was to track the tool tip for
static and dynamic cases under varying circumstances of illumination and occlusion. Fur-
thermore, the plan was to look at both translational and rotational motions of the tool.
However, it became clear that it would be difficult to instruct the Eye Robot to rotate about
a point, and due to the lack of information about the transformation from the Eye Robot to
Camera 1 coordinate system, rotational testing was excluded. Several delays in the schedule
also interrupted plans to test for occlusion.

13

Static testing was conducted by inserting the tool with a blue marker into a yellow
trocar, and moving this tool in known displacements for five trials under two light settings.
The displacements were calculated using the equation below. Average error in mm is shown
in Figure 19, with the most noticeable error of 1.9 mm for low light and 6.3 mm for bright
light. This suggests that the yellow trocar was not being detected accurately in bright light
conditions. The rest of the errors can be attributed to errors from calibration.

d =
√

((X1 −X2)
2 + (Y1 − Y2)

2 + (Z1− Z2)2) (11)

Figure 19: Average Static Error Results

Next, dynamic tests of tool tracking were performed. Since the transformation from
the Eye Robot to Camera 1 is not known, it was not possible to compare the slope between
frames to the slope programmed in the Eye Robot. Instead, the average and standard
deviation of the slope from frame to frame was examined for each of the five trials under two
light conditions.

Figure 20: Average Dynamic Error Results
xx.pngCurrently this table does not exist because it has not been made.

It is clear that the current detection method needs to be improved to minimize max-
imum tracking errors. Specifically, the color threshold must be modified to identify more
specific ranges of colors. Furthermore, the algorithm should incorporate bounding errors
on the size of the trocar and marker in order to exclude detection of other objects of the
same color. However, when the correct marker is detected, the tracking algorithm proved
to be accurate to about 2 mm. Since much of this error can be attributed to calibration,
it may be worthwhile to implement a more accurate calibration scheme as well. One other
possible source of error is the inevitable shift in camera orientation due to the quality of
the camera construction. As described earlier, there was a noticeable shift in camera view
during testing. This was minimized by allowing the system to settle for half an hour before
calibration before the final tracking evaluation. Tracking tests show that there is potential
for an accurate optical tracking system that can be implemented for ophthalmic surgery.

14

4 Management Summary

4.1 Credits

4.2 Deliverables

15

4.3 Timeline

Figure 21: Original Timeline

Figure 22: Final Timeline

16

4.4 Future Directions

The nature of our project was to show proof that a multi-camera optical tracking system
could provide useful positional feedback to surgeons performing ophthalmic surgery. As such,
there are many future directions this project could be taken in.

1) Purchase or build better cameras
There were four major issues with the 7mm boroscope cameras that were purchased: narrow
field of view, relatively poor resolution (480x640), durability, and compatibility with software
for real-time tracking. Improvement in tracking accuracy and moving to real-time tracking
is highly dependent on cameras that fit these requirements.

2) Implement 4-camera calibration
Currently, our device utilizes three pairs of pair-wise camera calibration through Matlab‘s
camera calibration toolbox. However, it would be less time consuming and possibly more
accurate to implement a multi-camera calibration that uses a calibration object visible to all
cameras to calculate homography, and subsequently the appropriate rotation and translation
matrices.

3) Calibration update while tracking
One problem that occurred during our project was the movement of cameras during tracking
experiments. Although part of the problem would be resolved with cameras that are more
durable and a device that can handle more weight, it is reasonable to assume a camera
may be moved accidentally during surgery. Therefore, it is necessary to implement a cali-
bration method such that calibration parameters can be updated during tracking procedures.

4) Synchronize cameras
Since the current implementation runs two streams that each grabs images from two cam-
eras, all four cameras are not synchronized. Under the assumption of slow movement, which
is reasonable for ophthalmic surgery, this is not an issue. However, it would be better to
have all four cameras synched.

5) Implement real-time tracking
The 7mm boroscope cameras were not compatible with python‘s opencv or ffmpeg modules.
As such, it was not possible to implement real-time tracking. One simple fix would be to
purchase cameras that are known to be compatible with one of these modules. Another
more time consuming approach would be to implement the tracking algorithm in C and
write functions to grab images.

Time tests also showed that the current implementation is too slow for real-time tracking.
One fix to dramatically increase efficiency is to implement the normalize function in Python.
The next fix would be to move the whole system to C++, which is much faster than Python.

Another way to improve efficiency of the tracking algorithm is to implement a bounding box
for detection. Specifically, information on maximum velocity and acceleration coupled with

17

current position would be necessary to define a bounding box on where the markers could be
next. This way, only a portion of the next frame needs to be searched to detect the markers.

6) Design more realistic device to fit the face
The final device design was rigidly attached to a platform with the phantom in order to
minimize errors due to movement. However, a real device would need to be attached to the
patient‘s face. Further steps could be taken to attach the device to a phantom rather than
to a platform.

4.5 Lessons Learned

One of the biggest obstacles we encountered was the lack of compatibility between
the cameras and software. Cameras could not be viewed at the same time unless they are
run on different buses. Furthermore, more problems exist with video capture due to the
limitations of DivX to two cameras at a time. The cameras were also not recognized by
camera capture modules in Python. These were all problems that were not accounted for in
our time management plans, so no one had been assigned responsibility for resolving these
issues. Time management became stressful when accounting for these unforseen problems.
In the future, we should plan for obstacles when dealing with new hardware or software.

Also, several issues arose from using group-owned equipment. For example, there
were several instances when UPrint was not available due to use for other projects, the laser
cutter was broken, the eye robot was unavailable, and the network was down on the desktop.
Although all these issues could not have been avoided, it would have helped to schedule with
other groups and communicate needs.

Finally, communication of expectations and task management is key. Although we
made a detailed management plan and meeting schedule, the expectations for how rigorously
to follow this plan differed. We would have also benefited from a more in depth search of
dependencies, as several unexpected dependencies emerged.

18

References

[1] Neily, Mills, et al. “Incorrect Surgical Procedures Within and Outside of the Operating
Room.” Archives of Surgery 16 Nov. 2009: Vol. 144, No.11:1028-1034. Web. 12 Feb. 2013

[2] J. D. Pitcher, J. T. Wilson, S. D. Schwartz, and J. Hubschman, “Robotic Eye Surgery:
Past, Present, and Future,” J Comput Sci Syst Biol, pp. 14, 2012.

[3] J.-P. Hubschman, J. Son, B. S. D. Schwartz, and J.-L. Bourges, “Evaluation of the motion
of surgical instruments during intraocular surgery,” Eye (London, England), vol. 25, no.
7, pp. 94753, Jul. 2011.

[4] M. Nasseri, E. Dean, S. Nair, and M. Eder, “Clinical Motion Tracking and Motion
Analysis during Ophthalmic Surgery using Electromagnetic Tracking System,” in 5th
International Conference on BioMedical Engineering and Informatics (BMEI 2012). 2012.

[5] G. M. Saleh, G. Voyatzis, Y. Voyazis, J. Hance, J. Ratnasothy, and A. Darzi, “Evaluating
surgical dexterity during corneal suturing,” Archives of ophthalmology, vol. 124, no. 9,
pp. 12636, Sep. 2006.

[6] K. Guerin, G. Vagvolgyi, A. Deguet, C.C.G. Chen, D. Yuh, and R. Kumar, “ReachIN: A
Modular Vision Based Interface for Teleoperation,” in the MIDAS Journal - Computer
Assisted Intervention, Aug. 2010.

[7] J. Y. Bouguet. Camera Calibration Toolbox for Matlab. 2008.

[8] Tomas Svoboda. “A Software for Complete Calibration of MultiCamera Systems.” Talk
given at MIT CSAIL. Jan 25, 2005.

[9] K. Zimmermann, J. Matas, and T. Svoboda. “Tracking by an Optimal Sequence of
Linear Predictors.” IEEE Transactions on Pattern Analysis and Machine Intelligence.
31(4), 2009

[10] A. Borkar, M. Hayes, and M. T. Smith, “A Non Overlapping Camera Network: Cali-
bration and Application Towards Lane Departure Warning” IPCV 2011: Proceedings of
the 15th International Conference on Image Processing, Computer Vision, and Pattern
Recognition. 2011.

[11] D.L. Pham, C. Zu, and J.L. Prince. “Current Methods in Medical Image Segmentation.”
Annual Review of Biomedical Engineering Vol. 2 pp 315-337. August 2000.

[12] Y. Deng. Color Image Segmentation. Computer Vision and Pattern Recognition, 1999
IEEE Computer Society Conference.

[13] J. Bruce, T. Balch, and M. Veloso, “Fast and inexpensive color image segmentation for
interactive robots,” in Proc. IEEE Intl. Conf. Intell. Robot. Syst., 2000, pp. 20612066.

[14] M. K. Hu, “Visual pattern recognition by moment invariants,” Information Theory, IRE
Transactions on, vol. 8, no. 2, pp. 179187, 1962.

19

[15] K. Kim, L. S. Davis. “Multi-camera Tracking and Segmentation of Occluded People on
Ground Plane Using Search-Guided Particle Filtering.” Computer Science Volume 2953,
pp 98-109. 2006.

[16] A. Yilmaz, O. Javed, M. Shah. “Object tracking: A survey.” ACM Computing Surveys
Volume 38 Issue 4, Article No. 13. 2006.

20

5 Appendix A

5.1 Device Design

Figure 23: CAD of Device View 1

Figure 24: CAD of Device View 2

21

5.2 Calibration Test Results

Figure 25: Camera 1 Intrinsic Test

22

Figure 26: Camera 2 Intrinsic Test

Figure 27: Camera 2 Error

23

Figure 28: Camera 3 Intrinsic Test

Figure 29: Camera 3 Error

24

Figure 30: Camera 4 Intrinsic Test

Look in the calibration.xlsx file in the Calibration folder for more information.

5.3 Detection Test Results

Look in the Detection folder for a complete list of all images and output used in the detection
test.

25

5.4 Tracking Accuracy Test Results

Figure 31: Tool Static Test Results

Figure 32: Trocar Static Test Results

Figure 33: Dynamic Test Results
xx.pngNot currently included.

26

6 Appendix B

6.1 Calibration

Single Camera Calibration
Step 1: take 20 pictures of the checkerboard from each camera
Step 2: open calib gui and load images
Step 3: manual corner detection
Step 4: calibration
Step 5: analyze error for outliers
Step 6: re-define corners for outliers. if still problematic, exclude images.
Step 7: final optimized calibration

Pair-wise Camera Calibration
Step 1: take 20 pictures of the checkerboard from camera pairs (1,2), (2,3), and (3,4)
Step 2: perform single camera calibration for each set
Step 3: open stereo gui and load left and right calibrations appropriately
Step 4: calibrate
Step 5: optimize calibration

6.2 Data acquisition

Step 1: start up in Windows on desktop with modified CISST code
Step 2: attach four cameras, each to a different bus
Step 3: run SVLxStereoCameraViewer.exe (found in Users/dev/cisst/build/cisst/bin/Release/)
Step 4: answer dialog with proper device indices, video names (.cvi), and frame rates (25
fps)
Step 5: take pictures by pressing space
Step 6: record videos by pressing ’r’ to start, ’p’ to pause
Step 7: rename files to reflect correct camera number as shown in Figure 11

6.3 Preprocessing videos

Step 1: run SVLxVideoConverter.exe (found in Users/dev/cisst/build/cisst/bin/Release/)
Step 2: open appropriate .cvi video
Step 3: insert converted name .avi video
Step 4: save number of frames for later use

6.4 Tracking Algorithm Use

Segmentation and Tracking of Image:
Step 1: modify path to image and calibration results in main image.py

27

Step 2: run main image.py
Note: for two markers instead of four, modify and run main image2.py
More instructions can be found in README files

Segmentation and Tracking of Video: Step 1: modify path to video, number of frames,
and calibration results in main video.py
Step 2: run main video.py
Note: for two markers instead of four, modify and run main video2.py
More instructions can be found in README files

28

