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Abstract

We are developing a software framework to enable robotic surgery simulation across
multiple systems. Such a sandbox would enable researchers to develop new simula-
tions for enhancing the training of a surgeon. We have used open source libraries like
H3DAPI, CISST to implement the core of our sandbox. The component based frame-
work of CISST makes it possible to have any manipulator based system controlling the
simulation environment. We have developed a teleoperation component that acts as a
communication server between the master device and the slave simulation. Addition-
ally, we have also implemented the slave side kinematics for sending desired motion
commands to the simulation. H3DAPI allows us to get access to the open source graph-
ics and physics rendering engines under a unified framework. Developers create their
own object models and plug them in the H3DAPI framework or can choose to use ex-
isting models provided. We demonstrate the framework using simple geometries and
controlling complex objects like tools will be done in the future.

1 Background

1.1 Robotic Surgery

Since, it was first introduced in 2000, robotic surgery has spread widely across the hospitals
in the world. It has been effective in certain procedures like prostatecomies, hysterectomies
where it has become the ‘gold standard’ way of doing for these surgeries. The most com-
monly used system is the daVinci R©Surgical System [8] (daVinci) from Intuitive Surgical Inc.
(ISI), Sunnyvale, CA, USA. There are currently over 2500 systems in circulation around
the world performing over 2 million procedures every year. The daVinci has been prevalent
in urology and gynecology since its introduction. However, in recent years it has gained
importance in the head and neck procedures also.

The daVinci system is a teleoperation based robot and has three important components
- surgeon console (masters), patient side cart (slaves), and the vision cart (Fig.1). The
master console had two Master Tool Manipulators (MTM’s) and a stereo viewer with 3D
display. The slave side has four teleoperated robotic arms. Three of these hold tools
and are referred as Patient Side Manipulators (PSM’s) and the fourth (Endoscope Control
Manipulator (ECM)) holds a full HD capturing stereo endoscope. The vision cart processes
the images captured from the endoscope and sends them to the stereo viewer on the master
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Figure 1: daVinci S System setup - (from left to right) Surgeon Console (Masters), Patient
Cart (Slaves), Vision Cart.

console. The vision cart also contains the Core, which performs all the state-management
and teleoperation.

There are some clear advantages of using the daVinci system as compared to traditional
surgery that it is minimally invasive and thus, the patient recovery time, blood loss, post
surgery trauma are greatly reduced. Compared to laproscopic surgery, which is also a
minimally invasive way of doing surgery, it has some advantages for the surgeons performing
the operation like less stress, no inversion of motion, negligible damage at port of entry,
depth perception, high dexterity and precise control of instruments.

1.2 Training

With the rapid growth in robotic surgery, training surgeons how to use and develop skills
on the robot has been a challenge. There is a lack of standardization in training protocols.
Additionally, unlike traditional or laproscopic surgery, the trainee and operating surgery
are not adjacent to each other. ISI has recently launched the dual-console system which
tries to overcome this limitation, wherein two surgeons can use the robot from two consoles
and one can supervise or learn from the other. This is limited however, due to space and
financial constraints. Thus, currently, training in robotic surgery is still in its earlier stages.

Institutions have developed training protocols (robotic fellowships) so that trainees can
perform certain bench-top exercises to develop their robotic skills. However, as the robot
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is a scarce resource and real-surgery usage is of higher priority, availability of the robot for
such training is not always feasible. Additionally, to evaluate the skill of the trainees and
to teach them the procedure, an expert surgeon is required to supervise them during the
training. This is not preferred by most of the experience surgeons. Thus, program directors
and trainees have recognized the need for an alternate way of training.

1.3 Simulation in Surgery

The need for a standardized training framework for robotic surgery was answered to by a
variety of developers that came up with table-top or console based virtual reality simulators.
This removed the need for recycling and a constant need for bench-top phantoms. Another
advantage of simulators was the automated assessment of skills using information from the
simulation. Thus, there was no or little need of supervision to access the improvement in
performance of the trainees. However, the simulations are limited to certain anatomical
exercises only. Developing anatomical simulation for procedural training is currently an
active area of research for most of the simulation developers.

1.4 daVinci Skills Simulator [9]

There was a need for a simulator similar to the actual daVinci system and thus ISI launched
the daVinci Skills Simulator (Fig. 2a). The Skills Simulator consists of the master console
and the Skills Simulator backpack as seen in the figure. The patient side tools and endoscope
are simulated (Fig. 2b) from the backpack onto the stereo viewer of the console. The console
is the same from the daVinci system. Thus, the simulator occupies only a smaller space
and can be dedicated for training as well as actual surgery. The system reports some skill
metrics for the users based on their performance of the simulated task. Overall, the system
has the advantage of repeatability and provides a standard platform for skill evaluation.

(a) Console with the backpack
simulator

(b) Simulation Exercise - Tubes

Figure 2: daVinci Skills Simulator
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Figure 3: daVinci Skills Simulator Block Diagram

We will talk about the motivation and goal of our project in Section 2. Section 3
will explain the different components of our sandbox framework. Specifically, the different
libraries are explained in Sec. 3.2. Following this, we will explain the information flow in
the sandbox in sec. 3.6. Section 4 deals with the projects management details.

2 Need for Simulation Sandbox

2.1 Motivation

The skills simulator from ISI does a good job at simulating the actual robot and instruments.
It can prove to be a great resource for many wider applications like surgical procedural plan-
ning, developing new instruments, user interfaces, modeling task performance for human
machine collaboration, etc.

The skills simulator uses the MSim2.0 simulation framework developed by Mimic Tech-
nologies Inc. [12] (who had developed a desktop simulator dvTrainer for robotic surgery).
Thus, the skills simulator effectively relies on the Mimic engine for the graphics and physics
simulation of instruments and other objects in the environment. As shown in Fig. 3, the
master console sends the user inputs to the simulator backpack. Internally, the simulator
backpack has a Mini Core (instead of the actual Core) to manage the state of the system
and the kinematics. This core sends the desired configuration of the virtual tools and en-
doscope to the Mimic engine, based on which the graphics and physics are rendered back
to the stereo viewer of the console.

However, the Mimic engine is a black box to a developer i.e. one does not have access
to the models in the engine or the rendering pipeline. Thus, one cannot add their own
simulation onto the skills simulator. This restricts the usage of the simulator to the train-
ing tasks developed by Mimic only. And, so the applications mentioned above cannot be
implemented using this simulator. This is the motivation for our project which is defined
below.
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Figure 4: Simulation Sandbox for daVinci System

2.2 Goal

As mentioned above, the current daVinci Skills Simulator is a restricted platform for sim-
ulation development owing to the closed Mimic engine. However, one can imagine creating
their own rendering engine to perform new simulations. We aim to create a Simulation
Sandbox which can be used by developers to create their custom object models and envi-
ronments using these new or existing models. The sandbox already would contain some
models for a range of instruments used in robotic surgery, along with simple objects like
rings, cubes, pegs, needles, etc. In order to be useful for other developers, we have used open
source libraries and packages for the implementation of this sandbox (Sec. 3.2). Figure 4
shows the system block diagram for our proposed sandbox. It is similar in structure to the
actual simulator. Instead of the simulator backpack we have our own computer running the
sandbox application which contains a Virtual Core for mimicking the Mini Core from the
daVinci simulator or the Core from the daVinci system.

2.3 Significance

As mentioned in Sec. 2.1, there are large number of applications for such a simulation
sandbox related to developing newer technologies. A framework like this would enable the
following applications, to name a few.

• Researchers can design their own simulation exercises for robotic surgery training
using the existing library of object models.

• Developers can create and add new objects to the library as well as implement new
applications using the same.

• Surgeons can plan procedures beforehand, using patient specific anatomical models.

• Surgeons can identify possible difficulties arising in a planned road-map for a proce-
dure and improvise before performing the actual case in the operating room.
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Figure 5: Sandbox System Block Diagram

• Sandbox can be a prototyping platform for testing new user interfaces, instruments,
surgical procedures, image guidance methods for the daVinci.

• Researchers can have large source of reliable ground truth available from simulations
due to access to the rendering pipeline for developing algorithms for modeling surgical
tasks, tool tracking, and so on.

3 Technical Approach

3.1 System Block Diagram

3.2 Software Dependencies

The simulation sandbox aims at creating a platform for surgical simulation of the daVinci
system using open source libraries. In order to create the simulation of the slave side of
the daVinci system, we would need to be able to communicate with the daVinci master
console. Such an access is provided to the framework using the ISI-API [1] which is a
research interface to the robot (Sec. 3.2.1). However, one should not be restricted to the
use of the daVinci master console. Thus, we chose to use the CISST-SAW (Sec. 3.2.2)
libraries to be able to communicate to the sandbox using a variety of master devices, each
having a component in the SAW framework. The sandbox was initially developed by Ashwin
from ISI. He created models for one of the instruments and some objects, and used them
to create a simulation task similar to the one present on the actual simulator. For this, he
used the H3DAPI (sec. 3.2.3) framework for the graphics and physics rendering. We shall
be building on top of these models, and thus, use the H3D framework for the rendering
pipeline.
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3.2.1 ISI-BBAPI [1]

This is the only component of the framework which is not open for user development. It is
available in binaries from ISI on an agreement basis. There are three different types of API
available from ISI for communicating to the daVinci system. We have a daVinci S console
(S is the version of the system). The ISI-BBAPI provides a read and write access to the
daVinci master console which is required for such a simulation framework. The sandbox
can be used on the actual daVinci Skills Simulator also. In this case, we would use the
ISI-SIM-API (present on the simulator backpack) to communicate with the master console.

3.2.2 CISST-SAW Framework [2, 3]

The CISST libraries have been developed for computer assisted interventions, while the
SAW framework aims at enhancing the surgeon’s capabilities through its components that
interface with many of the computer integrated surgical devices (e.g. sawIntuitiveDaVinci
for the daVinci system). The key aspect of the CISST-SAW framework is the component-
interface model it is built on. The cisstMultiTask library contains the mtsComponent

class that is the base class for creating new components. Additionally, mtsTaskPeriodic is
a component that owns its own thread and runs at a given frequency. We would be using
this component for the communicating across the components of the sandbox at regular
intervals. A component can contain two types of interfaces to talk to other components -
provided interface and required interface. Thus, a component “provides” information and
event handlers for the other component’s “required” information and event generators and
vice versa. So, as long as one can develop a component for a master device containing
certain interfaces required by the component for the virtual slaves, any master device can
be used to communicate to the virtual slaves. We will talk about the different components
developed for the sandbox in Sec. 3.4.

3.2.3 H3DAPI [5]

The H3DAPI is an open source scene graph API. It uses OpenGL (graphics library) for
graphics rendering and HAPI (open source haptics library) for the haptics rendering. The
H3DAPI can be interfaced at three levels - X3D, Python, C++. X3D is an ISO standard
XML based file format for representing 3D computer graphics. The H3DAPI contains fields
and nodes. Fields are basic building blocks of X3D, and are data containers. They are
connected in a directed graph and update their values based on events passed through the
graph. Their connections are called routes. Fields take care of the event handling and
pass information over the outgoing connections on the graph upon receiving events from
these connected fields. Nodes are containers of fields and their network, and help manage
the entire field network and routes in an easier manner. The H3DAPI already contains
X3D based nodes for graphics rendering as well as HAPI based nodes for haptics rendering.
Along with this, the H3DPhysics toolkit is another package distributed with H3DAPI. The
H3DPhysics toolkit is an implementation of the common physics engines like Bullet, ODE,
Physyx, etc. using H3D nodes and fields. We talk about some custom nodes developed for
the physics toolkit in Sec. 3.5
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Figure 6: Sandbox System Architecture Diagram

3.3 System Architecture

The system architecture diagram for the simulation sandbox is shown in Fig. 6. We
will explain the different components of the diagram below:

H3DViewer This is a GUI-based loader distributed along with the H3DAPI. It is able
to parse the X3D files containing the scene graph information, and creates the nodes and
field network needed for the requested scene-graph. The H3DViewer displays the rendering
by the H3DAPI, and is connected to the daVinci master console via DVI cables to render
on the stereo viewer.

X3D File This is the file describing the different nodes within the scene-graph. The nodes
present in the scene graph serve different functions like graphic models, collision models,
rigid body models, joints, PID controllers, etc.

Graphics Nodes These nodes describe the different objects in the scene and their render-
ing properties. X3D files for models can be developed from CAD files using some conversion
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softwares (like CADExchanger). These X3D files can, then be used in the definition of the
graphics nodes. We have existing X3D files for the different parts of the tools and simple
objects like rings, letters, numbers, cubes, etc.

Python Script Nodes H3DAPI contains a special node for communicating with a python
script. Different functions related to the simulation can be implemented in such a Python
script. Values of the fields routed to such a script node can act as inputs for a function to
determine certain attributes of the simulation, for example, completion of a surgical task.

H3DPhysics Nodes Nodes related to the physics simulation are present in the X3D
file for the scene-graph for specifying various properties of the objects rendered using the
graphics nodes. These nodes would be related to describing the collision properties of
the objects as well as their surfaces, etc. There are nodes for describing the joints of the
instruments and other objects present in the simulation, as well. Finally, our custom node
for the virtual slaves implementation is also derived from the H3DPhysics nodes.

3.4 CISST-SAW Custom Components

For the sandbox to be able to talk to different devices it was important to build it using
the CISST component framework. Following are the components that were developed for
the sandbox:

cisstDaVinci(cdv)ReadWrite

• This is an existing CISST component derived from the mtsTaskPeriodic for commu-
nicating with the daVinci system using the ISI-BBAPI.

• We extended this component to include methods specific for simulation. These were
needed so as to disengage the “real” slave from the master console and allow us to
use the master as a stand-alone console.

• This component contains commands in the provided interfaces to read the state of the
robot. These are triggered upon a function call from the required interface of another
component.

• The component sends the current master cartesian positions as well as any console
events by the user.

• The component also contains write commands to set the initial configuration of the
master based on the slave simulation.

mtsTeleoperation

• This was developed using the mtsTaskPeriodic so as to talk to a master device using
required interfaces to fetch the information about the motion of the masters and other
events on the console.
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• This component contains provided interfaces to send the desired cartesian positions
to the slaves component whenever a function call is made on the slaves component
side.

• This component contains requried interfaces to request the current cartesian positions
of the masters as well as any console events.

• The component also receives information about the initial configuration of the master
and slaves for the teleoperation to be aligned.

• The teleoperation can have certain states like CLUTCHED, FOLLOW, CAMERA,
LOCKED, etc. and the state management for the teleoperation is also performed
here.

mtsVirtualSlavesCore

• Again, this component is derived from mtsTaskPeriodic component. This was devel-
oped to emulate the Core on the slave side of the actual system.

• Like the Core, this component manages the slave side kinematics and sends informa-
tion related to the desired joint positions of the virtual slaves to the H3DAPI nodes
for simulation. The component uses the cisstRobot library to perform the forward
and inverse kinematics.

• This component has required interfaces to request the slave side desired cartesian
positions from the teleoperation component.

• The component also sets up the initial configuration of the tools and sends the infor-
mation to the teleoperation component.

• This component will also be able to load different tools for different simulation tasks.

3.5 H3DAPI Custom Nodes

In order to model the slaves of the daVinci system we had to develop some custom nodes in
the H3DPhysics toolkit. Specifically, the VirtualSlaves node was developed by us while
the other were part of the initial sandbox from ISI (written by Ashwin). We describe these
nodes below:

SevenDOF This is a simple node just for storing the different joint values of the slave
side of the daVinci.

PID Nodes These nodes were developed to perform PID control of the joints of the slave
side instruments in the simulation. These are: PIDCollection, JointPID, PrismaticJointPID,
RevoluteJointPID. Both, the prismatic and revolute joint nodes are derived from the base
class of JointPID. PIDCollection node contains instance of the joint PID nodes.
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VirtualSlaves

• This was developed by us for communicating between the CISST components and
the H3DAPI nodes. Thus, it was derived from both a H3DAPI node as well as a
mtsComponent.

• This has required interfaces to request the desired joint positions of the virtual slaves
from the mtsVirtualSlavesCore component.

• This also contains the SevenDOF nodes to pass the information to the PIDCollection

nodes in the scene-graph.

• This component contains an instance of each of the custom CISST components and
creates them when it gets constructed. It also adds all the components including
itself to mtsComponentManager. The component manager performs and handles all
the connections between the different components contained within it.

3.6 Information Flow

Now that we have described all the components and nodes involved in the simulation sand-
box, we present the overall information flow that take place within the simulation sandbox
here (Fig. 7).

1. The X3D file is loaded through the H3DViewer application which parses through the
XML tags and creates all the nodes requested along with the routing between the
fields of the different nodes.

2. Nodes for the graphics rendering of the object models like instruments are created
along with the transform nodes to be applied to them.

3. Nodes describing the physics rendering of the object i.e. rigid body collections, colli-
sion models, joints are created and connected to each other as required. These nodes
are also connected to the transform nodes of the graphics objects for rendering the
appropriate changes.

4. Nodes for the PID control of the instruments are also created and routed to the
VritualSlaves node created to fetch desired joint values for the instruments.

5. Finally, the custom VritualSlaves node is also created. Upon creation, this node in-
ternally creates the cdvReadWrite, mtsTeleOperation, mtsVirtualSlavesCore com-
ponents and adds them to an instance of the component manager. The connections
between all the components are also made here.

6. Once, the node and component creation is done, the virtual core sends the initial mas-
ter and slave configuration to the teleoperation unit, which in turn sends the master
pose to the master component. Upon successful initialization of the components to
the initial configuration the individual components start running.
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Figure 7: Sandbox Information Flow: ‘P’ - provided interface, ‘R’ - required interface, blocks
in green are derived from CISST, blocks in blue are derived from H3D, blocks in purple are
derived from both

7. Now, the traverseSG method of the VirtualSlaves node gets called at the refresh
rate of the H3DViewer. Inside this, the required interfaces for the PSM’s call their
functions to fetch the latest values of the desired joints from the mtsVirtualSlavesCore.

8. Also, the other components have their Run methods which are called periodically at a
pre-set rate. Thus, the virtual core component’s requried interface calls the function
to fetch the desired cartesian positions of the slaves from the teleoperation unit. Then,
it uses the cisstRobot objects and stored DH parameters to compute the desired joint
values for the virtual slaves.

9. Similarly, the teleoperation unit’s Run method calls the function from the required
interfaces to fetch information about the latest cartesian positions of the MTM’s
from the daVinci component. It then, uses this information and the current state
to compute the desired slave positions and updates them. The teleoperation also
handles events from the console and uses event handlers to change the state of the
teleoperation from FOLLOW to CLUTCHED, for example.

10. Finally, the daVinci component, which uses the ISI-BBAPI to talk with the robot,
gets the current positions of the MTM’s and console events at a preset rate for the
API.
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(a) (b)

Figure 8: Snapshot of the Match Board exercise (a) Mimic simulation (b) Simulation Sand-
box

4 Project Status and Management

4.1 Current Status

So far, we have been successful in creating the framework described above, except that
the final step of sending the desired joints to the PID seems to be not working. Thus,
we are unable to control the simulated tools. However, we have tested the components
using simple geometries like cylinders and moving them around using the cartesian pose for
the virtual slaves obtained from the teleoperation unit. The clutch and follow modes are
currently functioning in the teleoperation unit. The camera control would be implemented
in the future as it needs better understanding of the force constraints related methods of
the ISI-BBAPI.

However, we were able to use the existing models developed by Ashwin on the daVinci
Skills Simulator using the ISI-SIM-API. Figure 8 shows a comparison of the same exercise
from the actual simulation on the daVinci simulator from Mimic (on the left) and the
simulation using the sandbox models on the H3DViewer (on the right).

4.2 Deliverables

At the beginning of the project we had promised to deliver the following features in the
project. Some of which we were able to meet and the rest will be met in the future.

• Minimum: (Expected by 14th April) [DONE]

– Extend and develop the existing CISST-SAW component for interfacing with the
ISI-BBAPI to include additional functions related to setup of the console for use
as a stand alone simulator console.

– Create a simple virtual slaves Core for emulating the actual Core of the slave
side of the robot.

– Create a new CISST component for interfacing to the simulation library (H3D).

– Demonstrate the sandbox using a basic example with basic features.
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• Expected: (Expected by 28th April)

– Extend the virtual slave Core to incorporate other features of the daVinci console
e.g. clutching, swapping instruments, camera control, etc. [PARTIAL]

– Mimic the existing sandbox sample tasks from ISI to interface to the CISST
components (modifying according to available features in the sandbox) [DONE]

– Demonstrate the modified task developed by ISI using this extended sandbox on
the daVinci S console in the Mock OR.

• Maximum: (Expected by 9th May) [INCOMPLETE]

– Develop a new application involving new models using the extended simulation
sandbox, perhaps demonstrating the implications of this framework.

– Extend the sandbox for including features needed in the new applications devel-
oped.

4.3 Other Management Items

We were able to meet with all the dependencies for the project. We got delayed in im-
plementation of the components of the project due to issues related to compilation of the
software dependencies. We had trouble getting the correct version of the H3DAPI earlier
for testing the existing models on the simulator. Once, all of this had been worked out,
we hit another roadblock that ISI-BBAPI binaries were compatible for Microsoft Visual
Studio 2008 (VS 2008) and not 2010. Thus, we had to switch to VS 2008 which meant
recompilation of the dependencies using VS 2008. This led to another series of delays while
getting the packages compiled and running. The important take-away was that one should
always find the common denominator in projects like this which depend on a number of
libraries and packages before starting to work one of the parts.

We met with our mentors from ISI every fortnightly and contacted via email in case
we had questions for them. Meeting with Anton were on a weekly basis. We made many
modifications to our timeline and had to cut down on our maximum deliverables as it was
out of the timeframe for the project.
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