Gesture Controls for Raven Robot

Seminar Presentation by: Kristine Samlertsophon

Group 7

Fellow Member: Alan Chancellor Project Mentors: Anton Deguet and Kelleher Guerin

CIS Project Mission

Implement Gesture Controls for Raven Robot

Image courtesy of 3Gear



image courtesy of popular mechanics

CIS Project Mission

Integrate 3Gear system, CISST, ROS, and Raven

Implementation and Evaluation of a Gesture-Based Input Method in Robotic Surgery

Purpose: Implement and evaluate a gesture-based input for a surgery robot; explore usability for commanding frequently-used automated or semi-automated surgical actions.

Relevance to my project: Gives background on surgical robot input; explores one type of gesture-based input.

Authors:

Christoph Staub, Salman Can, and Alois Knoll

Robotics and Embedded Systems, Technische Universität München, D-85748 Garching, Germany;

Verena Nitsch, Ines Karl, and Berthold Färber

Human Factors Institute, Universität der Bundeswehr München, D-85577 Neubiberg, Germany **Presented:**

IEEE Workshop on Haptic Audio Visual Environments and Games (HAVE), October 14-17, 2011

Summary of Problem

- Too many surgical actions!
 - Primary input/tool control
 - Additional arms
 - Camera control
 - Automated tasks
 - Additional commands

- Current input devices are inadequate
 - Distraction from operative situ
 - Cognitive burden and mental stress
 - Training effort
 - Not well-integrated into surgical workflow

 Integrate haptic gesture control for some surgical commands

• Test against menu input for speed, accuracy, and user experience

Key Results

Compared to menu inputs, gesture inputs were:

- Faster
- More prone to error (10.42% vs. 5.21% error for menu inputs)
- More "useable"

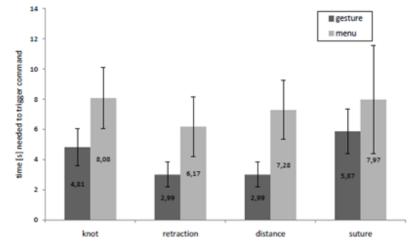


Fig. 7. Times needed to trigger an action: Gesture-based vs. menu.

- Preliminary results show feasibility of gesture-based input methods for robot-assisted surgery
- Authors' analysis of the usability of current input methods gives a framework for our project

Endoscopic Partial-Autonomous Robot (EndoPar) controlled by two Phantom haptic displays

Fig. 1. Hardware setupe Ceiling mounted robots with surgical instruments

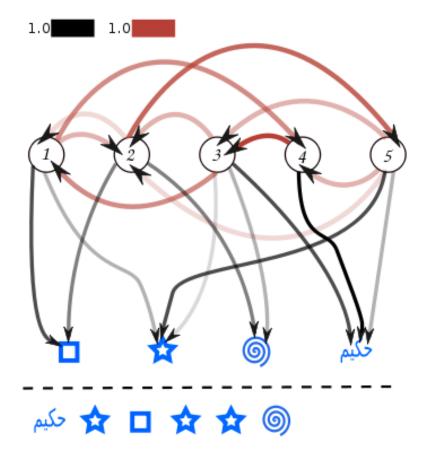


Fig. 2. Master console with PhantomTMdevices and 3D screen

Technical Background

Hidden Markov Model identifies gestures

- directional change of each instrument's trajectory
- directional change of one instrument with respect to the second instrument
- velocity of each instrument
- distance between the two instruments
- temporal change of distance between two instruments
- state (open or closed) of each gripper

ERC | CISST

Preliminary Experiment

- Preliminary study: 22 participants performed 2 different gestures for 9 pre-selected surgical functions
- Authors chose the 4 most consistent and highly rated functions to conduct their main experiment
- This ensured that they used the most intuitive gestures

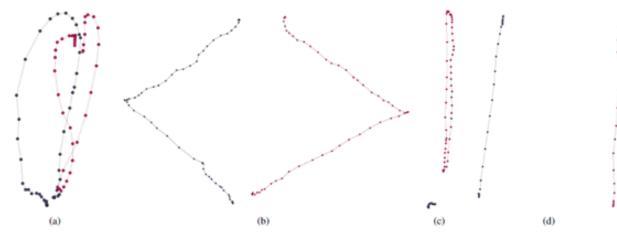
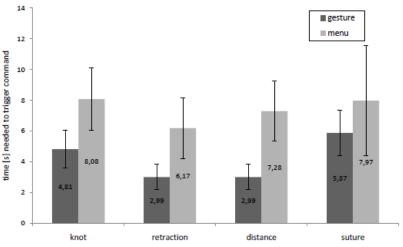


Fig. 6. Trajectories of gesture instances: The blue lines indicate the left instrument, the red ones show the right instrument. Fig. 6(a) shows an instance of the "knot-tying" gesture, Fig. 6(b) shows the gesture for "suturing", Fig. 6(c) shows the gesture that initializes the "distance measuring". The picture is rotated 90° counterclockwise to save space. The gesture depicted in Fig. 6(d) would initialize the retraction of the 3rd robot arm to supply the surgeon with new material (e.g., threads).


Main Experiment

- 24 participants
 - 2x4 ((input mode) x (surgical action)) conditions
- Measured accuracy and speed

modality	knot	retraction	distance	suture	ø
gesture	95.83%	75.0%	100.0%	87.5%	89.58%
menu	95.83%	91.67%	95.83%	95.83%	94.79% _{Pg}

- Surveyed for user experience
 - pragmatic quality
 - attractiveness
 - hedonic quality-stimulation
 - hedonic quality-identity

Discussion/Issues:

- Main instruments not decoupled when performing gesture inputs
- Did not explore the effects of training
- User experience ratings are biased towards novel, exciting technology

Conclusion: Much further study is needed, but results show haptic gesturing to be a good addition (but not replacement) to input, offering more speed to execute surgical commands

- Detailed evaluation of study's motivation
- Thoughtfully implemented gesture-based input
- Thorough analysis of experiment's limitations, acknowledging many areas of further study needed

Negative Points

- HMM poorly explained
- No mention of ongoing or potential work in other types of gesture inputs
- No discussion of how to implement less intuitive commands
- User experience measures did not answer the usability problems posed at the beginning of the study
- Voice recognition seems appropriate for their problem/system

- Preliminary findings are optimistic for gesture-based inputs
- Our project's input method is very different and admittedly less thought out in terms of intuitive input
 - Main goal is the proof-of-concept of integration of the CISST and ROS libraries with 3Gear and Raven systems.
 - This should make experimenting with input devices simpler.
 - 3Gear and other input devices must consider usability; the authors outline the issues well (but need some help measuring effectiveness).

Thank you!

Questions?