

Hydrophone Sensor Integrated with APL Snake Robot

S. Van Kooten

Johns Hopkins University

February 21, 2013

Mentors: Emad Boctor, Mehran Armand

- Integrate one or more optical hydrophones into the current APL snake robot manipulator to allow accurate ultrasound readings of tip position.
- Oevelop software framework to allow communication between ultrasound machine, EM tracker, robot control system, and optical hydrophone.
- Visualize position data in useful and visually pleasing way (similar to Robodoc)

Motivation

Kutzer et al.

Current method

- Inaccurate
- Limited mobility
- Insufficient

Improvements

- Direct measurement
- Accuracy ($\leq 1.3 \text{ mm}$)
- Improved visualization

• • • • • • • • • • • •

Implementation plan

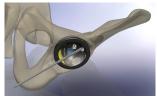
- Optical hydrophone in end-manipulator
- Measure ultrasound at tip
- Calculate US time of flight
- Triangulate from multiple sources
- Display data back to operator

Courtesy of Emad Boctor

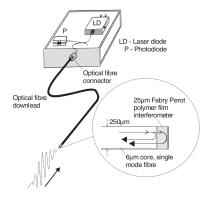
Image: A matrix and a matrix

CIS Project 12

Snake Robot



Liu et al.


Liu et al.

(日) (四) (三) (三) (三)

Optical Hydrophones

B T Cox et al.

Advantages

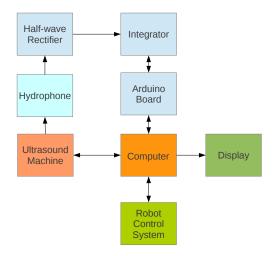
- Angle invariant
- Small (\leq 100 microns)
- Flexible
- Sensitive (same as standard hydrophones)

(日) (周) (三) (三)

Limitations

• Loses effectiveness at high curvature

Ultrasound background


Sonosite (sonosite.com)

- MHz frequencies
- Different configurations

Image: Image:

- Individual piezoelectric elements
- 1540 m/s propagation in tissue

Implementation plan

S. Van Kooten (Johns Hopkins University)

CIS Project 12

February 21, 2013 8 / 15

Deliverables

Minimum

- Software and circuitry to measure time of flight
- Able to determine manipulator position within 5 mm

Expected

- Software and circuitry to measure time of flight
- Ø Able to determine manipulator position within 1 mm
- 8 Rudimentary visualization, shows position

Maximum

- Software and circuitry to measure time of flight
- 2 Able to determine manipulator position within 1 mm
- 3 Able to determine manipulator orientation within 5 degrees
- Clean visualization, shows progress, material to remove

Month April February March May Week 15 3 8 q 14 Time of flight circuit Interface Programs Triangulation Algorithm Test Whole System Visualization Software Integrate Snake Model

Checkpoints

- March 4: Complete circuit on Arduino board to time ultrasound travel time.
- March 11: Complete program to interface with EM tracker, ultrasound machine, and Arduino driver programs
- S March 18: Complete triangulation algorithm.
- March 25: Test all components together (circuit, interface, triangulation)
- S April 1: Complete rudimentary visualization program
- April 7: Interface previous software to snake control program; use existing software model or create new model for snake robot kinematics

(日) (周) (三) (三)

Dependencies

Dependency	Resolution Plan	Action on failure	Required date	Alternative
Ultrasound machine	Acquired	NA	NA	NA
Fibre-optic hydrophone	Acquired	NA	NA	NA
Pelvis model	Animal bone from butcher	Do without	April	Buy/borrow model
EM tracker	Acquired	NA	NA	NA
Arduino board	Acquired	NA	NA	NA
Learn to operate equipment	Ask Xiaoyu	Unacceptable	March 4	Ask Emad
Access to full snake-robot	Schedule with Mehran	Actuate by hand	Late April	NA

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- Radius of curvature
- 2 Lensing anatomy
- Snake self-blocking

-

Image: A matrix and a matrix

Bibliography

- Cox, B. T., et al. Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation. Journal of Physics: Conference Series. Vol. 1. No. 1. IOP Publishing, 2004.
- Liu, Wen P., et al. Sensor and Sampling-based motion planning for minimally invasive robotic exploration of osteolytic lesions. Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011.
- Kutzer, Michael DM, et al. Design of a new cable-driven manipulator with a large open lumen: Preliminary applications in the minimally-invasive removal of osteolysis. Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011.
- Segreti, Sean M., et al. "Cable length estimation for a compliant surgical manipulator." Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012.
- Precision Acoustics (PAL) Fibre-Optic Hydrophone Documentation

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Questions?

S. Van Kooten (Johns Hopkins University)

CIS Project 12

February 21, 2013 15 / 15

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト