

Hydrophone Sensor Integrated with APL Snake Robot

S. Van Kooten

Johns Hopkins University

April 2, 2013

Mentors: Emad Boctor, Mehran Armand, Xiaoyu Guo

(日) (同) (三) (三)

- Integrate one or more optical hydrophones into the current APL snake robot manipulator to allow accurate ultrasound readings of tip position.
- Obvelop software framework to allow communication between ultrasound machine, EM tracker, robot control system, and optical hydrophone.
- Visualize position data in useful and visually pleasing way (similar to Robodoc)
- Oevelop general purpose calibration methods

Motivation

Kutzer et al.

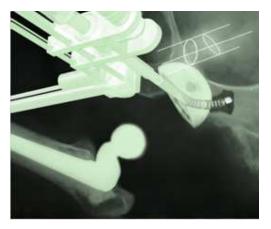
Current method

- Inaccurate
- Limited mobility
- Insufficient

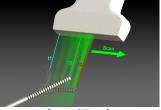
Improvements

- Direct measurement
- Accuracy (≤ 1.3 mm)
- Improved visualization

Implementation plan


- Optical hydrophone in end-manipulator
- Measure ultrasound at tip
- Calculate US time of flight
- Multilateration from multiple sources
- Display data back to operator

Courtesy of Emad Boctor


< 🗇 🕨 < 🖃 🕨

Use case scenario

Courtesy of Xiaoyu Guo

Courtesy of Xiaoyu Guo

Kutzer et al.

April 2, 2013 5 / 17

Use case scenario

Kutzer et al.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへの

Deliverables

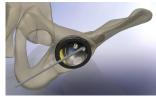
Minimum

- Software and circuitry to measure time of flight
- Able to determine manipulator position within 5 mm

Expected

- Software and circuitry to measure time of flight
- Ø Able to determine manipulator position within 1 mm
- 8 Rudimentary visualization, shows position

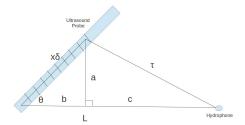
Maximum


- Software and circuitry to measure time of flight
- Able to determine manipulator position within 1 mm
- 3 Able to determine manipulator orientation within 5 degrees
- Clean visualization, shows progress, material to remove

Previous concerns

- Hydrophone fibre curvature
 - Results unaffected down to 2cm radius
 - Noticeable attenuation at 1cm, but fibre unharmed
- 2 Lensing anatomy
 - Can use prior CT scan data to estimate refraction
- Oltrasound penetration
 - \approx 85% reflection at tissue-bone interface
 - $\approx 2\%$ penetration
 - But, only need binary signal, noise may be issue
 - Still need to test with real bone

Liu et al.



Liu et al.

<hr/>

CIS Project 12

Calibration for element spacing

$$\tau^{2} = a^{2} + c^{2} \qquad \tau^{2} = a^{2} + c^{2}$$

$$L = b + c \qquad = (x\delta\sin\theta)^{2} + (L - b)^{2}$$

$$a = x\delta\sin\theta \qquad = L^{2} - 2Lx\delta\cos\theta + x^{2}\delta^{2}\cos\theta^{2}$$

 $b = x\delta\cos\theta$

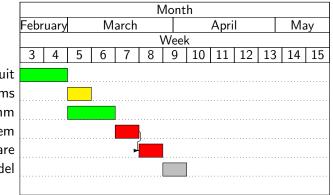

Image: A match a ma

$$\tau^2 = L^2 - 2Lx\delta\cos\theta + x^2\delta^2$$

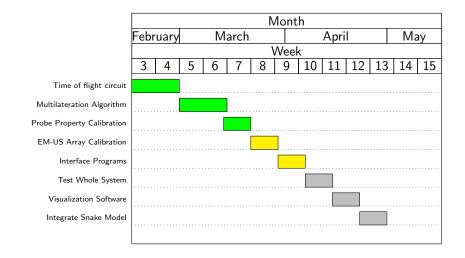
- Perform non-linear least squares on 128 elements of array.
- Treat τ^2 as y, L, δ , and θ as parameters to solve for to minimize residuals.
- Used simulation and Gauss-Newton method to test, worked well for measurement errors below 5%, more complex techniques required to make it more robust.

- Use parameters from previous slide for two probe positions
- If position and orientation of probe known for both samples, can use the L and θ for each to determine the position of US array in frame of the US probe
- Possible to do with US imaging and fiducial, but wanted to find another method to simplify process

Workflow


S. Van Kooten (Johns Hopkins University)

CIS Project 12


April 2, 2013 12 / 17

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Time of flight circuit Interface Programs Triangulation Algorithm Test Whole System Visualization Software Integrate Snake Model

New Schedule

S. Van Kooten (Johns Hopkins University

CIS Project 12

▶ ◀ 클 ▶ 클 ∽ ९ ୯ April 2, 2013 14 / 17

Image: A match a ma

Deliverables

Minimum

- Software and circuitry to measure time of flight
- a Able to determine manipulator position within 5 mm

Expected (additional)

- **1** Able to determine manipulator position within 1 mm
- Q Rudimentary visualization, shows position
- **③** General purpose calibration methods

Maximum (additional)

- Able to determine manipulator orientation within 10 degrees
 - 2 Clean visualization, shows progress, material to remove

(日) (周) (三) (三)

Bibliography

- Cox, B. T., et al. Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation. Journal of Physics: Conference Series. Vol. 1. No. 1. IOP Publishing, 2004.
- Liu, Wen P., et al. Sensor and Sampling-based motion planning for minimally invasive robotic exploration of osteolytic lesions. Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011.
- Kutzer, Michael DM, et al. Design of a new cable-driven manipulator with a large open lumen: Preliminary applications in the minimally-invasive removal of osteolysis. Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011.
- Segreti, Sean M., et al. "Cable length estimation for a compliant surgical manipulator." Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012.
- Precision Acoustics (PAL) Fibre-Optic Hydrophone Documentation
- Filonenko, Viacheslav, Charlie Cullen, and James D. Carswell. Asynchronous ultrasonic trilateration for indoor
 positioning of mobile phones. Web and Wireless Geographical Information Systems. Springer Berlin Heidelberg, 2012.
 33-46.
- Adam Smith, Hari Balakrishnan, Michel Goraczko, Nissanka Priyantha, Tracking Moving Devices with the Cricket Location System, Proc. 2nd USENIX/ACM MOBISYS Conf., Boston, MA, June 2004.
- Nissanka Bodhi Priyantha, Hari Balakrishnan, Erik Demaine, Seth Teller, Mobile-Assisted Localization in Wireless Sensor Networks, Proc. IEEE INFOCOM Conference, March 2005.

(日) (同) (日) (日) (日)

Questions?

S. Van Kooten (Johns Hopkins University)

CIS Project 12

:▶ ◀ ≧ ▶ 볼 ∽ ९ ୯ April 2, 2013 17 / 17

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト