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Abstract

Feature matching based 3D reconstruction is a standard technique in 3D Computer
Vision. An natural extension is to reconstruct dynamic surfaces from videos, such as
reconstructing sinus surfaces from endoscopic videos. However, since the camera is
moving and the sinus surfaces are normally deformable and non-planar, the feature
matching is usually unsatisfactory. We will employ a state-of-the-art feature matching
strategy in the domain of minimally invasive image analysis. Instead of restricting in-
liers using a global affine transformation, multiple affine components are hierarchically
clustered. Qualitative results verify that this Hierachical Multi-Affine (HMA) strategy
works well for non-planar and deformable surfaces. Also conducted are the empirical
uncertainty analysis of the estimated motion in a leaving-one-out cross validation set-
ting. A series of comparison between HMA matching and SIFT matching are presented
as well.

1 Introduction

From [1], it is estimated that there are more than 200,000 functional endoscopic sinus surg-
eries (FESS) procedures performed annually in the United States at a cost of several billion
dollars annually. As the name implies, all of these procedures are performed under endo-
scopic guidance, and a large fraction employ surgical navigation systems to visualize critical
structures that must not be disturbed during the surgery. Although navigation is widely
employed for FESS, its capabilities are far from optimal. In particular, the sinuses contain
structures that are smaller than a millimeter in size, and yet delineate critical anatomy such
as the optic nerve or the carotid artery. However, the accuracy of navigation is 2 mm under
near ideal conditions [1]. As a result, navigation can provide a qualitative sense of location,
but final confirmation of anatomic structures ultimately relies on the surgeon’s ability to
interpret and relate the CT image to the endoscopic view. This process, which is further
complicated when the anatomy is distorted or otherwise altered by surgery, requires time,
skill and experience and can lead to errors in judgement that adversely affect outcome [1].
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According to [1], the significance of the endoscopic visualization and navigation is the
introduction of a paradigm shift in surgical navigation by using a device present in ev-
ery endoscopic surgery, namely the endoscope, to improve registration and visualization of
anatomy. This will have numerous positive impacts. Most importantly, it will provide an in-
expensive, non-invasive, radiation-free method to enhance registration accuracy at any point
of the procedure. Enhancements in registration will reduce ambiguity for the surgeon during
surgery, enhancing confidence, and improve workflow by reducing the need to re-register or
re-image the patient. The endoscope will also be used as a measurement device to update
anatomic models during a procedure. This not only will improve the ability of the surgeon to
visualize the progress of the surgery, but it will accrue additional benefits to the patient and
hospital, as it may reduce the level of radiation exposure and cost by eliminating the need for
intraoperative CT imaging. Figure 1 presents our proposed pipeline to achieve endoscopic
3D visualization.

Figure 1: The pipeline for 3D visualization from endoscopic videos and pre-operative CT
scan images [7].

3D reconstruction has been deeply explored in the computer vision community [2, 5] and
surface rendering has been widely examined in the computer graphics community. Most
results are shown qualitatively. However, results on endoscopic reconstruction are seldom
reported, while the demand for clinical use is actually large as introduced above. Data
collection is not the only difficulty. Simply applying multi-view geometry techniques may
not work well. It is an interdisciplinary field between computer vision and microsurgery,
so domain problems such as precision are crucial. To satisfy the precision requirement, We
hope to build a sense of quantitative endoscopy and make algorithmic improvement such as
more robust feature matching and more accurate motion estimation.

2 Approach

In the course project, we focus on feature matching and motion estimation, which are e-
laborated in Sec. 2.1 and Sec. 2.2, respectively. Sec. 2.3 briefly introduces some standard
techniques employed in Sec. 2.1 and Sec. 2.2.
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2.1 Hierarchical Multi-Affine Feature Matching

Image matching are key to 3D reconstruction, stereo, tracking and recognition. Generally
speaking, it include feature detection, description and matching. Feature description is
generally expected to be invariant to image scaling and rotation, at least partially invariant to
changes in illumination and 3D camera viewpoint and highly discriminative. Scale Invariant
Feature Transform (SIFT) [4] just provides such a keypoint detector and a feature descriptor,
which normally satisfies those requirements.

Matching is expected to be robust to outliers and deformation (e.g., non-planar surface).
In the original SIFT framework [4], Lowe estimates a global affine transformation between
two images and defines outliers as those point pair which do not subject to the affine trans-
formation. A recent Hierarchical Multi-Affine (HMA) matching algorithm’s basic idea is
to represent a plane or surface using multiple affine-transformation components. Multiple
affine estimation will slow down the processing, so hierarchical K-means clustering is incor-
porated. Binary search in a tree structure outperforms exhaustive search in efficiency. We
need to highlight our own contributions on uncertainty analysis in this report and thus refer
interested reader to [9] for details of HMA.

2.2 Empirical Uncertainty Analysis of Motion Estimation

In this section, we will quantitatively analyze the feature matching algorithm. and use the
matched features in camera motion estimation . The basic idea of empirical uncertainty
analysis is to compute statistics such as variance and covariance from results in a number
of experiments, either by cross validation or Monte Carlo simulation [2]. The uncertainty
of the computed rotation is captured in the covariance matrix of the rotation [2]. Here, we
perform the leave-one-out cross validation (LOOCV), partially due to lack of groud truth
matches. The exact algorithm is elaborated as followed.

Algorithm 1. Covariance analysis of motion estimation by LOOCV.
for k = 1...F rmNum

Compute SIFT feature keypoints to form a candidate feature pool.
Perform HMA matching to select keypoints, which are grouped into affine components.
Perform image rectification considering radial distortion.
Convert image coordinates to World’s coordinates using camera’s intrinsic parameters.
if MatchFeaNum > 4

for trial = 1...MatchFeaNum
Leave the trial-th keypoint out as a query point.
Perform RANSAC on the left keypoints to generate an inlier set.
Perform 5-point algorithm to estimate the essential matrix E using the inlier set.
Decompose E into a rotation matrix R and a translation vector t.
Convert R to a quaternion.
Compute square of projection error for the held-out query point:

residual = (R ∗Xquery
left + t) −Xquery

right
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sqErr = L2norm(residual)
end for
Compute the mean and standard deviation of a sequence of sqErr.
Compose a Rmean from mean(quaternion).
for trial = 1...MatchFeaNum

Rmean ∗R−1 is approximately a skew-symmetric matrix skew(α, β, γ),
where α, β, γ are the rotation angle (scalar) in X, Y, Z axis, respectively.

end for
Compute the standard deviations of α, β, γ, respectively.
Compute the covariance matrix of a sequence of vector < α, β, γ >.

end if
end for

2.3 Standard Techniques Employed

This section briefly introduce some terminologies appeared in Algorithm 1. Most of them
are standard techniques in 3D computer vision [5]. Thus, Wikipedia is a good resource for
detailed explanations. For readers who are farmiliar with them, please skip this section.

Coordinate transformation from image coordinates’ to World’s coordinates follows the
standard geometric model of image formation [5] as shown below.

In the right-hand side of the above equation, the first matrix encodes the scaling infor-
mation and the second encodes the focus information. The product of these two matrices is
termed the intrinsic parameter matrix. Here the projection matrix is not included since the
original coordinates are uncalibrated image coordinates, instead of not World’s 3D coordi-
nates. However, only linear distortion is considered in this equation.

Radial distortion [5] is also compensated in our program using calibration outputs, such
as the focus length and image optical center.

RANSAC. Since not all matched feature keypoints are inliers, simply using all the points
will not induce a good estimation. We need a robust estimator such as RANSAC, which is
short for RANdom SAmple Consensus. Its basic idea is to use a minimal number of data
points needed to estimate the model [5].
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Essential matrix comes from the epipolar constraint equation and encodes the relative
pose/motion [R, t] between two cameras [5]. By using eight-point algorithm [5] or the im-
proved five-point algorithm, the camera motion can be re recovered from an essential matrix.

Rotation quarternion. Unit quarternion is a four-element vector. A rotation matrix can
be represented by a quarternion as:

Euler’s rotation theorem implies that the composition of two rotations is also a rotation.
According to [12], suppose we specify an axis of rotation by a unit vector [x, y, z] and we
have an infinitely small rotation of angle ∆θ about the vector. Expanding the rotation
matrix as an infinite addition, and taking the first order approach, the rotation matrix ∆R
is represented as:

Notice that ∆R is a skew symmetric matrix, where the element x, y, z denotes the rotation
angle in X, Y, Z axis, respectively. In our case, ∆R = Rmean ∗R−1 and x, y, z correspond to
α, β, γ, respectively. An empirical analysis of ∆R’s uncertainty is a core task in this course
project.

3 Experiments

A fair comparison between HMA and SIFT macthing algorithms will be evaluating each
algorithm’s matching accuracy with respect to the ground truth. However, it is much too
time-consuming to manually pick up pairs of feature keypoints. Thus, we do not collect the
ground truth data for feature matching evaluation.

3.1 External Libraries

Camera calibration is performed by using Caltech Matlab calibration toolkit [3].
SIFT features are extracted using VLfeat Matlab library [11].
HMA matching are performed using HMA Matlab toolbox [8].
RANSAC based E matrix estimation is performed using OpenCV’s findFundamentalMat.
Camera motion recovery from E is done using Structure and Motion Matlab toolkit [10].
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Figure 2: A sample of patient endoscopic video data. In this sample, we make use of frame
3 to frame 66 for testing. All frames in this continuous part represent endoscopic scenarios.

Figure 3: Endoscopic sensor and data collection devices. The top box is the processor
produced by NDI. The bottom left is a high-precision optically tracked endoscope, The
bottom middle and right form a EM tracked scope for use in airway data collection [1].
Picture courtesy of Dr. Daniel Mirota.

3.2 Patient Data

Patient data are collected at Johns Hopkins Hospital on December 19, 2012. The endoscopic
video is hours long. As shown in Figure 2, we pick up a sample sequence consisting of 64
frames for testing. The design of the data collection device (see Figure 3) is another task in
the grant project. A data collection system has been developed to simultaneously capture
both the endoscopic video and external motion tracking data. However, data collection is
out of the scope of this course project, which focuses on the algorithm design and testing.
Images are processed in the original size (1280 × 1024 pixels, 3.8MB per image).
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Figure 4: Example results of HMA matching vs. SIFT matching. In each group, the top row
shows SIFT’s result, in which line crossings normally imply mismatches. The bottom row
shows HMA’s result, in which different affine components are displayed in different color.

3.3 Feature Matching Results and Comparison

Figure 4 presents a qualitative comparison between HMA and SIFT feature matching. H-
MA’s results are with high confidences. Namely, the matches found are likely to be correct
matches. and there are no obvious mismatches. For example, there is no point match which
corss regions in HMA’s results. Moreover, it is clear to see that HMA finds enough correct
matches. These results verify that local deformation constraints are useful in restricting
point matches.

Although there are more matches in SIFT’s results (see Figure 5), the confidences of
matches are relatively low. Namely, there are more outliers among the matched pairs. There
can be obvious mismatches. For instance, a point in a left region can be matched to another
in a right region. This pair is still possible to satisfy the inaccurate global deformation.
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Figure 5: RANSAC detected outlier number vs. Total matched feature number. Shown for
both HMA and SIFT for a comparison.

Figure 5 presents the detected outlier number given by RANSAC vs. the total matched
feature number given by the matching algorithm. Although RANSAC’s estimation is not
guaranteed to be right, Figure 5 more or less implies: while there are more matches found
by SIFT, there are actually fewer inliers.

3.4 Variance and Covariance Analysis for Estimated Motion

In this section, we will examine estimated motion - primarily the rotation matrix ∆R, which
encodes the rotation angles. Detailed algorithm has been shown in Algorithm 1. Here, we
opt the closely related part out and give Algorithm 3.
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Algorithm 2. Estimating covariance matrix by quarternions.
for k = 1...F rmNum

for trial = 1...MatchFeaNum
Decompose E to get R and t
Convert R to quaternion

end for
Compose a Rmean from mean(quaternion)
for trial = 1...MatchFeaNum

DeltaR = Rmean ∗R−1, approximately a skew-symmetric matrix skew(α, β, γ).
end for
Compute the standard deviations of α, β, γ, respectively.
Compute the covariance matrix of a sequence of α, β, γ.

end for

Actually, another way is to estimate the covariance matrix by Euler angles. Theoretically,
quarternions induces higher precision than Euler angles. However, in cases where rotation
angles are small, these two ways are normally equivalent.

Algorithm 3. Estimating covariance matrix by Euler angles.
for k = 1...F rmNum

for trial = 1...MatchFeaNum
Decompose E to get R and t
Decompose R to get yaw, pitch and roll angles: rx, ry, rz

end for
Compose a Ra from mean(rx),mean(ry),mean(rz) and set it as Rmean

for trial = 1...MatchFeaNum
DeltaR = Rmean ∗R−1, approximately a skew-symmetric matrix skew(α, β, γ).

end for
Compute the standard deviations of α, β, γ, respectively.
Compute the covariance matrix of a sequence of α, β, γ.

end for

When we refer to variance, we actually compute the its square root - the standard de-
viation. Both the variance and covariance encode the uncertainty in the estimation of the
rotation. Figure 6 jointly displays all three rotation angles together with the number of
features and presents a comparison between HMA and SIFT. We can see that for both HMA
and SIFT, the standard deviation of α, β, γ almost have the the same trends. The trend of
feature number generally satisfy their pattern as well.

Discussion on Uncertainty. Comparing HMA with SIFT in Figure 6, we cannot safely
say that the angular standard deviation in HMA’s results are generally smaller than that
in SIFT’s. Given that the variance of estimated motion is affected by the variance of the
locations of feature keypoints, the uncertainty should still be somewhat essential for the

9



Figure 6: The standard deviation of α, β, γ vs. feature number. Shown for both HMA and
SIFT for a comparison.

motion estimation algorithm such as five-point algorithm. From [2], the uncertainty of the
estimated transformation depends on many factors, including the number of points used
to compute it, the accuracy of the given point matches, as well as the configuration of the
points in question. Analytically, we can apply direct differentiation of the epipolar constraint
and finally estimate the covariance of the motion given keypoint correspondences [6]. For
this issue, much more in-depth analysis will be performed as future work. We hope to give
theoretic explanation as well.

Now, let us examine the covariance matrix for two example cases. It requires experiences
about rotations and deep understanding about uncertainty to analyze the estimated covari-
ance matrices. It is unclear for me to compare the covariance matrices given by HMA and
those given by SIFT matching.
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Figure 7: Comparison of the estimated covariance matrix by HMA matching vs. SIFT
matching. Images shown for the pair (frame 1, frame 2). These two frames are mainly
different in scale. The rotation angles should be relatively large. The SIFT matching algo-
rithm works rather poorly, as we see a number of line crossing. The way SIFT matching
judge outlier is to globally estimate an affine transformation and then see if points fit it or
not. A single affine transformation is difficult to describe the deformation between these two
frames. HMA matching apply group SIFT keypoints into several clusters and estimate an
affine transformation for each cluster. Although there is only one local affine transforma-
tion fit well the points, this cluster provides enough point matches to estimate the motion.
Normally speaking, the more matches, the better motion estimation.

3.5 Tentative Accuracy Analysis for Estimated Motion

In this section, we will project the held-out query keypoint using the estimated R and t. For
each pair of adjacent frames with over 4 matched features, the input of the this testing are
coordinates of feature keypoints in the frame t (on the left) and those in the frame t+ 1 (on
the right), together with the essential matrix E estimated previously.
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Figure 8: Comparison of the estimated covariance matrix by HMA matching vs. SIFT
matching. Images shown for the pair (frame 6, frame 7). There is no much change between
the two frames. Note that the diagonal elements of the estimated covariance matrix are
small compared to other frames.

Algorithm 4. Computing projection error for the held-out query point.
for k = 1...F rmNum

for trial = 1...MatchFeaNum
Decompose E to get R and t
Compute projection error for the held-out testing point:

residual = (R ∗Xquery
left + t) −Xquery

right

err = L2 − norm(residual)
end for
Compute the mean and standard deviation of a sequence of err.

end for
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Figure 9: Projection error of the held-out query keypoint with HMA matching.

Figure 10: Projection error of the held-out query keypoint with SIFT matching.
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First of all, let us see Figure 9 to examine the results for HMA matching. Except 9
frames with much larger mean of square error (MSE), all other frames’ MSE are within 10
mm2, and the majority’s MSE are within 5 pixel square. Then, let us check Figure 10 to
examine the results for SIFT matching. Nearly all frames’ MSE are within 5 mm2.

It seems that SIFT performs better than HMA, which contradicts our motivation to
improve SIFT matching by HMA matching. However, since in both cases the majority
frames’ MSE are both within 5 pixel square, the performances seem to be bascially similar.
Actually, since the query point varies in each trial, the MSE does not strictly represent the
matching performance. It is also affected by the number of trials. Nonetheless, we analyze
this to have an impression of the performance quantitatively.

4 Discussion

Till now, I feel that I cannot safely draw a conclusion about uncertainty in motion estimation.
However, it verifies that HMA generally provides more accurate and more robust feature
matching than SIFT does. About the further step - motion estimation, our expectation is
that HMA induces better motion estimation than SIFT does, which is not verified by the
comparison of the mean square projection error in the LOOCV experiment. Nonetheless, we
have an impression of both’s performance qualitatively and quantitatively.

Following up in the future is much more in-depth uncertainty analysis. We hope to give
theoretic explanation as well. In the same time, we will test how HMA feature matching affect
the reconstruction pipeline’s perfomance and how it complete against the SIFT matching.
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5 Appendix

Figure 11: More example results of HMA matching vs. SIFT matching.
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Figure 12: Comparison of the estimated covariance matrix by HMA matching vs. SIFT
matching. Images shown for the pair (frame 2, frame 3). The different between the frames lies
more in scale. This pair are challenging. For HMA matching, there is one group subjecting
to an affine transformation. For SIFT matching, most are mismatches.
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Figure 13: Comparison of the estimated covariance matrix by HMA matching vs. SIFT
matching. Images shown for the pair (frame 3, frame 4).
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Figure 14: Comparison of the estimated covariance matrix by HMA matching vs. SIFT
matching. Images shown for the pair (frame 4, frame 5).
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Figure 15: Comparison of the estimated covariance matrix by HMA matching vs. SIFT
matching. Images shown for the pair (frame 5, frame 6).
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Figure 16: Comparison of the estimated covariance matrix by HMA matching vs. SIFT
matching. Images shown for the pair (frame 10, frame 11).
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Figure 17: Comparison of the estimated covariance matrix by HMA matching vs. SIFT
matching. Images shown for the pair (frame 11, frame 12).
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Figure 18: Comparison of the estimated covariance matrix by HMA matching vs. SIFT
matching. Images shown for the pair (frame 15, frame 16).
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