Constrained Control for Surgical Assistant Robots

Ankor Kapoor, Ming Li, and Russell H. Taylor

Seminar Presentation by Emily Daggett (Group 2) Partner: Paul Wilkening Mentors: Russell Taylor and Jin Kang

Presentation Outline

Summary

- Project Overview
- Paper Selection

Problem

- Experimental Methods
- Results
- Analysis & Conclusions

Overview

- Cochlear Implant: medical device used to restore hearing
 - External: Microphone, Speech Processor, Transmitter
 - Internal: Receiver/stimulator, Electrode Array
- Problem
 - Difficulty of inserting electrode array manually
- Project goals
 - Image the cochlea using 2 different types of OCT Imaging
 - Bulk Scan
 - Side-view Probe
 - Create Models from OCT images
 - Create Virtual Fixtures for use in inserting electrode array

Paper Selection

- Virtual Fixtures
 - Increase safety and precision of procedure
 - Filter out hand tremor
 - Keep surgical instruments in pre-defined safe zones
- Creating VFs for cochlear implant insertion is a main goal of our project

Goals of Paper

- Task Primitives
 - Stay on a point
 - Maintain a direction
 - Move along a line
 - Rotate around a line
 - Stay above a plane

- Hard and Soft Constraints
 - Preferred regions
 - Safety regions
 - Forbidden regions

Image credit: Kapoor et al.

Problem

- Virtual Fixtures are useless without algorithms to implement them
- Paper provides customizable implementation algorithm

Experimental Methods

- JHU Steady-Hand Robot
- Prescribed Motion: Sinusoidal Curve

Summary Problem Experiment Results Ana

Results

- Algorithm models VFs using least squares problem
- Solving least squares problems with linear constraints more efficient than solving nonlinearly constrained problems
- Higher accuracy with nonlinear constraints

# Hyperplanes	4	8	16	32	Nonlinear
Time(ms)	2.2680	4.1225	7.2842	14.3549	9.4017

Image credit: Kapoor et al.

Results

- "Soft" Virtual Fixtures
 - Provide resistance, do not halt movement
 - Useful in Safety Regions

- "Hard" Virtual Fixtures
 - Completely stop movement
 - Useful in Forbidden Regions

Results

Analysis & Conclusion

Relevance

- Framework for creating complex virtual fixtures
 - Broken in to Task Primitives
 - Can be used for inserting cochlear implant along cochlear axis
- Uses of Soft and Hard Constraints
 - Preferred region: axis of cochlea
 - Safety region: close to edges of cochlea
 - Forbidden region: touching or nearly touching edges of cochlea
- Future Work
 - Experiment on other robots
 - Form changing tools

THE JOHNS HOPKINS UNIVERSITY

