### Synthetic Aperture Ultrasound Imaging with Robotic Tracking Technique Paper Seminar Presentation Computer Integrated Surgery II

Project No. 2

#### Team: Haichong "Kai" Zhang, Ezgi Ergun

Mentors: Dr. Emad M. Boctor, Xiaoyu Guo, Alexis Cheng





### Overview

- 1. Background
- 2. Paper Summary Alexis Cheng et al., "Design and development of an ultrasound calibration phantom and system", SPIE Medical Imaging, 2014
- 3. Paper Analysis
- 4. References

### **Background:** Synthetic Aperture Ultrasound Imaging





Higher resolution can be achieved by expanding the aperture size.

### **Background:** Ultrasound calibration

- In order to move the probe for a designated position, or to know the location of the origin of ultrasound image, unknown rigid-body transformation on the transducer from sensor to
  <sup>Un</sup> Tra image is needed to be calibrated.
- Process to identify this unknown transformation is called ultrasound (US) calibration.



## Paper Summary

Alexis Cheng et al., "Design and development of an ultrasound calibration phantom and system", SPIE Medical Imaging, 2014, in press

- State-of-the art solution to do ultrasound calibration
- The approach of solving AX=XB problem is applicable to our project
- Their experimental considerations are available to our project

### **Paper Summary**



Alexis Cheng et al., "Design and development of an ultrasound calibration phantom and system", SPIE Medical Imaging, 2014, in press

### **Paper Summary** Design of calibration phantom

- This phantom is an extension of Z-fiducial phantoms
- One ultrasound image can extract homogeneous transformation from image to the phantom subscript A<sub>i</sub>
- It is possible to get nearly perpendicular angle







## Paper Summary Design of calibration phantom



Figure 2. Workflows for A) the overall US calibration and B) the automatic segmentation algorithm

### Paper Summary Result



Table 1. Normalized error metric for different combinations of motion generation and filtering

| Motion Generation | Filtering | Error Metric (mm) |
|-------------------|-----------|-------------------|
| A <sup>i</sup>    | Without   | $2.75 \pm 1.67$   |
| A <sup>i</sup>    | With      | $1.74 \pm 1.00$   |
| A <sup>ij</sup>   | Without   | $2.36 \pm 1.49$   |
| A <sup>ij</sup>   | With      | $1.56 \pm 1.02$   |

## Paper Summary Discussion

- Filter of motions are effectively working to eliminate bad motions combinations.
- US images are difficult to segment and the US image quality will cause the automatic segmentation algorithm to fail.
- This phantom takes advantage of US physics and can be easily printed without user modifications.

Table 1. Normalized error metric for different combinations of motion generation and filtering

| Motion Generation | Filtering | Error Metric (mm) |
|-------------------|-----------|-------------------|
| $A^{i}$           | Without   | $2.75 \pm 1.67$   |
| $A^i$             | With      | $1.74 \pm 1.00$   |
| $A^{ij}$          | Without   | $2.36 \pm 1.49$   |
| A <sup>ij</sup>   | With      | $1.56 \pm 1.02$   |

# **Paper Analysis**

#### Pros

- Well describe the overview of AX=XB problem based on segmentation.
- A approach to automatically segment region is presented, and compensation method such as Hough transform is used.
- The advantage of the phantom and the 1.56 mm accuracy is shown.

#### Cons

- Segmentation error affects the calibration result
- Hard to achieve sub-milimeter accuracy



Idea to improve the accuracy:

US Calibration Using Moving Phantom

- Moving the phantom toward x and y axis, from the coordinate of phantom.
- Normalized cross correlation (NCC) is used to identify the displacement of phantom in image.
- The goal of this project is to reconstruct X only using moving information.





Ultrasound calibration utilizing moving phantom trajectory





Figure 1. AX = XB formulation with labeled coordinate frames

Invent a decent ultrasound calibration method



### Progress

Ultrasound Calibration utilizing moving phantom trajectory

| Rotation | Error from<br>GT | STD      | Translation | Error from<br>GT | STD      | Repeatabili<br>ty |
|----------|------------------|----------|-------------|------------------|----------|-------------------|
| Yaw      | 0.0924           | 0.0578   | Х           | 0.3722           | 0.2612   | 0.4619            |
| Pitch    | 0.0966           | 0.0734   | Y           | 0.2099           | 0.12     | 0.217             |
| Roll     | 0.0712           | 0.0399   | Z           | 0.1646           | 0.1467   | 0.2142            |
| Norm     | 0.151455         | 0.101589 | Norm        | 0.457913         | 0.322717 | 0.553464          |

- Error form GT = closeness to the grand truth Subtract each result with grand truth and took the average of absolute value. STD is also calculated
- 2. Repeatability: repeat reconstructing X loop times and see the stability of result

### References

- Boctor, E.M., Viswanathan, A., Choti, M.A., Taylor, R.H., Fichtinger, G., Hager, G.D., "A Novel Closed Form Solution for Ultrasound Calibration," IEEE Int Symp. On Biomedical Imaging, 527-530, 2004
- Andreff, N., Horaud, R., Espiau, B., "Robot Hand-Eye Calibration Using Structure-from-Motion" The International Journal of Robotics Research, 2001.

### Thank you for your attention.

### Idea from Paper STEP1 - Rotation

 The rotation (of subscript A) is reconstructed through point cloud registration between three points on model coordinate and image coordinate.





### **Idea from Paper** STEP2 – Translation (partial)

 Translation of two images from the coordinate of model can be obtained by getting displacement of points in the images which is projected to the model coordinate.





STEP3 – Reconstruction of X

STEP 3

Rotation

•  ${}^{A}R^{ij}{}^{X}R = {}^{X}R {}^{B}R^{ij}$ 

Translation

• 
$${}^{A}R^{ij} \mathbf{X}\mathbf{P} + \begin{bmatrix} R_{i}^{T}(1,1)x + R_{i}^{T}(1,2)y + R_{i}^{T}(1,3)\mathbf{Z} \\ R_{i}^{T}(2,1)x + R_{i}^{T}(2,2)y + R_{i}^{T}(2,3)\mathbf{Z} \\ R_{i}^{T}(3,1)x + R_{i}^{T}(3,2)y + R_{i}^{T}(3,3)\mathbf{Z} \end{bmatrix} = {}^{X}R {}^{B}P^{ij} + {}^{X}\mathbf{P}$$

- Three equations and four unknowns for one relative pose
- Nine equations for six unknowns for three relative poses



## **Progress: Simulation**

Ultrasound Calibration utilizing moving phantom trajectory

Defined X

- Rotations: -87.94(row) -17.99(pitch) -0.91673(yaw)
- Translation: 97(x) -365(y) -20(z) from experimental result using active-echo

Grand truth subscript As

- Group 1: [20:40 10 60 60 60 60]
- Group 2: [10 20:40 60 60 60 60]
- Group 3: [20:40 20:40 60 60 60 60] \*[row pitch yaw x y z]

Error

- Normalized cross correlation[0.05mm]
- Subscript B[0.1mm].

Loops for assessment = 20

### **Progress: Result**

Ultrasound Calibration utilizing moving phantom trajectory

| Rotation | Error from<br>GT | STD      | Translation | Error from<br>GT | STD      | Repeatabili<br>ty |
|----------|------------------|----------|-------------|------------------|----------|-------------------|
| Yaw      | 0.0924           | 0.0578   | Х           | 0.3722           | 0.2612   | 0.4619            |
| Pitch    | 0.0966           | 0.0734   | Y           | 0.2099           | 0.12     | 0.217             |
| Roll     | 0.0712           | 0.0399   | Z           | 0.1646           | 0.1467   | 0.2142            |
| Norm     | 0.151455         | 0.101589 | Norm        | 0.457913         | 0.322717 | 0.553464          |

- Error form GT = closeness to the grand truth Subtract each result with grand truth and took the average of absolute value. STD is also calculated
- 2. Repeatability: repeat reconstructing X loop times and see the stability of result