
Intraoperative Registration of Pathology for Adjuvant Postoperative Radiotherapy
Computer Integrated Surgery II

Spring 2014

Project Report

Team 4

Team Members: Kareem Fakhoury, Matthew Hauser, Steven Lin

Mentors: Dr. Harry Quon, Dr. Jeremy Richmon, Dr. Junghoon Lee

Introduction

 Our project focused on producing a workflow for evaluating tissue deformation. This

workflow includes the methodology of actions to be taken pre-, intra-, and postoperatively, as

well as a method for postoperative image processing. The latter was accomplished in two ways.

 First, it was completed as originally planned in the initial project plan presentation. This

included registration of intraoperative tracking data to outline the pathology to the preoperative

CT image and then registration of the preoperative CT to the postoperative CTs to evaluate the

movement of the points taken intraoperatively.

 Second, we used a method of registration, detailed more fully in the approach section,

which included the registration of intraoperative data to the postoperative open-wound CT

image, followed by two image registrations: one from the postoperative closed-wound image to

the preoperative image and the next from the resultant image to the postoperative open-wound

image. Although this method does not represent a realistic scenario for clinical use because in

practice open-wound CT scans are rarely taken, it represents the ideal process.

 It was found that the original method was found to contain fairly accurate results.

Determination of the locations of the points of pathology was less than 1 cm from ground truth.

The second method did not yield as accurate results, but did provide insight into small changes in

the workflow could improve the quality result. We have begun to address the problem of

providing better guidelines on where to deliver postoperative radiotherapy.

Background and Problem

 With regards to cancers in the head and neck, the general procedure for eliminating the

pathology is to perform surgical resection of the tumor as well as pre- and post-operative

radiotherapy. Adjuvant radiotherapy is delivered based on a plan created after the surgery and on

pre-operative and post-operative CT scans as well as on reports from the operating surgeon.

However, post-operative tissue deformation – shifts in the anatomy surrounding the surgical area

– makes the previous location of the tumor difficult to identify. Because of this uncertainty and

in order to ensure that none of the remaining cancer cells are missed, the area identified for

radiotherapy is overestimated. This is harmful to patients because the volume of irradiated tissue

dictates the toxicity affecting the patient, which has negative downstream consequences, such as

intense pain and the inability to swallow and eat autonomously. The goal of our project is to

show how the tissue around the surgical area deforms from pre- to post-operative CT scans. This

will allow radiation oncologists and dosimetrists to more accurately localize the area containing

the remaining cancer cells. This information, in turn, will inform planning to allow tighter and

more accurate volumes for adjuvant radiotherapy. Small decreases in irradiated volume will lead

to significant decreases in toxicity.

Figure 1. The above images demonstrate the difficulty with which radiation oncologists are faced in

determining where the tumor was before resection and, therefore, where to deliver radiotherapy

Approach

 Our approach involves actions taken before, during, and after tumor resection, as well as

post-processing of image data. As mentioned in the introduction, the post-processing of the data

was completed with two distinct methodologies.

 The experimental setup required three CT scans of the subject: a preoperative scan, a

postoperative scan taken before the wound was closed (i.e. open-wound), and a postoperative

scan taken after the wound was closed (i.e. closed-wound). Intraoperatively, the pathology was

outlined by recording the position of various points around the area of the removed tissue using

the Polaris optical tracking system. In post-processing, the intraoperative Polaris data outlining

the pathology was registered to the preoperative CT scan for use with the primary method and to

the postoperative-open CT for the secondary method. Using an open-source medical imaging

software package, Elastix, the preoperative CT scan was then registered to each of the

postoperative scans. Transformix was used to determine the movement of the points outlining the

pathology.

Figure 2. This diagram summarizes the directions of registration:

intraoperative to preoperative, and preoperative to each of the postoperative

 To test our methodology, the experiment was carried out on three pig heads, which have

a size and shape similar to human heads. For each pig head, we placed five fiducials on the

surface of the head (see Figure 3) and took preoperative CT scans. We then simulated surgical

resection by removing a semicircular portion of the tongue. Four radio-opaque markers were

placed at the positions at which we would record points with the Polaris to outline the pathology

(see Figure 4); the markers served as the ground truth. In the same frame, we recorded the

positions of the markers on the tongue using the Polaris, as well as the positions of the five

fiducials on the head to allow a point cloud to point cloud transformation in post-processing,

which allowed us to then register the Polaris points outlining the pathology to the preoperative

CT image.

Figure 3. In this 3D rendering, one can see three of the fiducials on the head: one above the snout, one on the left cheek and one

under the chin. There are also ones on the right cheek and on the forehead

Figure 4. The above image shows the tissue resection from the tongue as well as the placement

of the four gold standard markers on the tongue, placed anterior, posterior, medial, and medial deep

In post-processing, we digitally removed the ground truth clips (see Figure 5) and

registered the intraoperative Polaris tongue data to the preoperative image. Then, using Elastix

open source software, we determined the parameter set (see Appendix) that would allow for the

best registration between the preoperative CT image and the postoperative CT images. We would

determine the accuracy of the rigid registration by computing root mean square (RMS) error

between measured coordinates of the fiducials and computed coordinates of the fiducials. For the

deformable registration, we would compute the RMS error between the ground truth markers

coordinates and the computed tongue coordinates after having moved during the registration.

Figure 5. This figure demonstrates the digital removal of a clip. The image on the left

shows the image before clip removal and the image on the right shows after clip removal

 The points determined using the Polaris system that were registered to the preoperative

image were then transformed to their corresponding points on the postoperative image using the

transformation determined from the image registration. The accuracy of their movement was

determined by means of a comparison with the actual locations of the ground truth surgical clips.

 Since the points around the pathology were recorded after surgical resection, it is

expected that one would achieve a more accurate image registration by first registering the

intraoperative Polaris data to the postoperative open-wound image and then subsequently

registering that image to the preoperative image followed by a registration to the postoperative

closed-wound image. This represented our second method for determining pathology.

 See the results section and the following discussion for further information on this

alternative approach.

Results

 The results from both of our methods indicate that it is possible to intraoperatively

monitor the location of pathology. Additionally, both of the two methods indicate both

possibilities and constraints on the method.

 The first method which involved directly registering the postoperative images to the

preoperative images provided, on average, fairly accurate results. The results from each of the

three trials are indicated in the tables below with various parameter sets being used for the

registration. The default parameter file involves using advance mean squares as its metric, and a

B-Spline transform as its transformation and manual defined fiducial points to guide the rigid

transformation. The parameter lists the element(s) that are different from this default parameter

list. Only deformable transformations following a standard rigid transformation are shown.

Table 1

Pig 1- Error in mm

Parameters Clip 1 Clip 2 Clip 3 Clip 4 RMS

AdvancedMeanSquares 11.61 9.50 8.87 9.73 9.98

SplineKernelTransform 9.81 9.86 10.64 10.59 10.23

Table 2

Pig 2- Error in mm

Parameters Clip 1 Clip 2 Clip 3 Clip 4 RMS

AdvancedMeanSquares 12.29 10.85 5.69 6.20 9.21

SplineKernelTransform 2.97 5.05 4.22 4.51 4.25

Table 3

Pig 3- Error in mm

Parameters Clip 1 Clip 2 Clip 3 Clip 4 RMS

AdvancedKappaStatistic 9.64 7.99 8.00 6.59 8.13

AdvancedMattesMutualInformation 9.64 8.18 8.21 6.86 8.28

AdvancedMeanSquares 13.80 12.23 4.27 6.59 10.02

AdvancedMeanSquares-
WithoutFixedPoints 8.91 11.33 6.98 4.51 8.32

KappaStatisticSplineKernelTransform 23.16 23.25 21.20 27.84 23.99

SplineKernelTransform 8.14 7.64 7.93 5.94 7.46

 From the optimization it became clear that the best parameters for the transformation

involved using thin plate splines for the deformable registration.

Table 4

 Spline Kernel Transform

 Clip 1 Clip 2 Clip 3 Clip 4 RMS

Pig 1 9.81 9.86 10.64 10.59 10.23

Pig 2 2.97 5.05 4.22 4.51 4.25

Pig 3 8.14 7.64 7.93 5.94 7.46

 The results for the experiment prove to be fairly accurate for all three trials. The average

distance an optical tracker marker ended up falling from its ground truth location was 7.28 mm

which is less than the margins used in many current radiation treatment plans. Let’s now turn

our attention to the second method.

 The second method involved first determining the location of the Polaris points on the

postoperative open CT scan. The closed CT scan was then registered to the preoperative scan

and subsequently registered to the postoperative open scan. This methodology allowed the

Polaris points to have a more accurate initial placement because the open CT scan more closely

resembles that of the intraoperative situation.

Table 5

STD, AMS

 Clip 1 Clip 2 Clip 3 Clip 4 RMS

Pig 1 8.651725 10.22334 12.97421 12.2157 11.14588

Pig 2 33.49595 29.86056 10.97079 17.66517 24.72877

Pig 3 24.68685 16.94226 6.201226 10.91687 16.23356

Table 6

STD, AMS2

 Clip 1 Clip 2 Clip 3 Clip 4 RMS

Pig 1 9.05125 11.94012 15.53985 12.2157 12.40163

Pig 2 35.41654 29.60225 11.75918 17.64705 25.39843

Pig 3 20.99748 10.49664 7.115601 7.24926 12.78923

Table 7

STD, AMS, Fixed Points

 Clip 1 Clip 2 Clip 3 Clip 4 RMS

Pig 1 25.56007 13.73505 4.578349 9.156698 15.38485

Pig 2 19.16119 14.07881 10.89262 9.06512 13.84006

Pig 3 29.94147 20.39446 7.379377 11.9283 19.42399

 Results from this, are not as accurate as those received using the first method, but this

fact is both reconcilable and informative. Since the Polaris points more accurately initially fall

onto the open CT scan, it would be expected that the results would be more consistent because

this allows for consistent placement of the points before image registration. With that being said,

it would be expected that because this method requires multiple registrations, it is more likely to

lead to a less accurate overall registration due to compounding of error.

Discussion of Error

 In addition, throughout the experiment, it became apparent that the preoperative tongue

points from the Polaris were not in the exact proper location. In fact, in some instances the points

were above the tongue, floating in the air. These points were not successfully transformed by the

deformable registration. It is imperative that this be remedied in future development.

 One possible cause is that the points are taken from the curved tip of the surgical clips to

allow for consistency and reproducibility. However, the tips protruded about 5 mm from the

tongue and, thus, the Polaris data did not represent points on the actual surface of the tongue.

This is an issue in the methodology, and should be corrected for future experiments. In terms of

surgical workflow, this should not be an issue as the surgeon would identify the points directly

on the tissue. However, in order to have more successful data, simply taking the points at the

base of the clip on the tongue should aid the situation.

 Another source of error is the inherent difference in the location of the tongue during the

intraoperative stage when the Polaris data on the tongue was collected, and the location of the

tongue preoperatively, which is when the image to which the Polaris points are registered is

taken. In the current methodology, the tongue is simply approximately inserted back into its

original location. Efforts were made to view the extent of this issue by registering the

preoperative image to the postoperative open wound image so as to identify the correct points on

the tongue. Ultimately, due to the extra image registration that must occur, the method proved to

be far less successful. This is likely due to the compounding of error over multiple steps.

Significance

 The results from this experiment could potentially have large scale clinical impact.

Although our method is still far from complete and is in need of more development, the study

serves as a strong indicator of proof of feasibility. If successful, the method could be adapted to

other regions of the body and aid in radiation treatment planning for patients with a wide array of

cancers.

Management Summary

Project Roles:

 Matthew Hauser: Matt was responsible for image processing prior to registration. He also

led the effort in registration of the preoperative image to the postoperative closed image and

analysis of the resulting transformations.

 Kareem Fakhoury: Kareem led the effort in coordinating data collection between the

mentors, the technicians, the Polaris users, and the butcher shop. He played a role in registering

the preoperative image to postoperative closed image.

Steven Lin: Steven led in registering the intraoperative Polaris points to the preoperative CT

image. He played a role in registering the preoperative image to postoperative closed image.

Future Development:

 From the cumulative results of the trial, it seems that providing fixed points for the

registration is beneficial. A next step could be to use other rigid structures that are closer to the

tongue in order to aid the rigid registration. Additionally, Dr. Quon has submitted a grant to fund

further research on the matter including funding for experiments on 60 pig heads. The

experiments will be done to further evaluate the approach as well as to determine the feasibility

of other similar scenarios.

Expected versus Accomplished Deliverables:

 A key deliverable is the collection of data, which was accomplished. We compared the

use of the ANTs software package to the Elastix software and decided to focus on Elastix

because it provided better initial results and appeared more versatile. We were able to compare

various metrics and parameters using the Elastix software and successfully created fairly

optimized parameter files. Assessment of the feasibility of the methodology was accomplished.

The deliverable of submitting a paper was not pursued, but may be pursued in the near future.

We therefore reached our expected deliverable and part of the maximum deliverable.

What was Learned:

 The registration between CT images is a complex field. Based on the background papers,

it appears that current CT to CT registration cannot account for drastic alterations such as a

surgical removal of tissue. Some papers suggested generating a hole in the tissue; however this

would not coincide with the purpose of the experiment in this paper. The team was able to

explore several different metrics of comparison as well as different optimizers, which were very

interesting as a high level view of current registration techniques.

Appendices

Appendix A: Rigid Transformation File- Performed before every registration

(FixedInternalImagePixelType "short")
(MovingInternalImagePixelType "short")
(FixedImageDimension 3)
(MovingImageDimension 3)
(UseDirectionCosines "true")

// **************** Main Components **************************

(Registration "MultiMetricMultiResolutionRegistration")
(Interpolator "BSplineInterpolator")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")
(FixedImagePyramid "FixedSmoothingImagePyramid")
(MovingImagePyramid "MovingSmoothingImagePyramid")

(Optimizer "StandardGradientDescent")
(Transform "EulerTransform")
(Metric "AdvancedMeanSquares")

// ***************** Transformation **************************

(HowToCombineTransforms "Compose")

// ******************* Similarity measure *********************

(NumberOfHistogramBins 64)
(ErodeMask "false")

// ******************** Multiresolution **********************

(NumberOfResolutions 3)
(ImagePyramidSchedule 4 4 4 2 2 2 1 1 1)

// ******************* Optimizer ****************************

(MaximumNumberOfIterations 1000)
//(MaximumStepLength 1.0)
//(RequiredRatioOfValidSamples 0.05)

// **************** Image sampling **********************

(NumberOfSpatialSamples 2000)
(NewSamplesEveryIteration "true")
(ImageSampler "Random")

// ************* Interpolation and Resampling ****************

(BSplineInterpolationOrder 1)
(FinalBSplineInterpolationOrder 3)

(DefaultPixelValue -1024)

//SP: Param_a in each resolution level. a_k = a/(A+k+1)^alpha
(SP_a 0.2)

//SP: Param_A in each resolution level. a_k = a/(A+k+1)^alpha
(SP_A 50)

//SP: Param_alpha in each resolution level. a_k = a/(A+k+1)^alpha
(SP_alpha 0.6)

(WriteResultImage "true")
(WriteResultImageAfterEachResolution "false")
(WriteTransformParametersEachIteration "false")
(WriteTransformParametersEachResolution "false")

// The pixel type and format of the resulting deformed moving image
(ResultImagePixelType "float")
(ResultImageFormat "nii")

Appendix B: Parameter Files for Registration of Preoperative to Postoperative Closed-Wound

// Parameter file for B-spline registration

// The internal pixel type, used for internal computations

(FixedInternalImagePixelType "short")

(MovingInternalImagePixelType "short")

// The dimensions of the fixed and moving image

(FixedImageDimension 3)

(MovingImageDimension 3)

// **************** Main Components **************************

(Registration "MultiMetricMultiResolutionRegistration")

(Interpolator "BSplineInterpolator")

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

(FixedImagePyramid "FixedRecursiveImagePyramid")

(MovingImagePyramid "MovingRecursiveImagePyramid")

(Optimizer "QuasiNewtonLBFGS")

// Manually definded landmark based points

(Metric "AdvancedMeanSquares" "CorrespondingPointsEuclideanDistanceMetric")

// ***************** Transformation **************************

// Thin Plate Splines

(Transform "SplineKernelTransform")

// Combination of Transforms

(HowToCombineTransforms "Compose")

// ******************** Multiresolution **********************

// The number of resolutions.

(NumberOfResolutions 4)

(ImagePyramidSchedule 32 32 32 16 16 16)

// The control point spacing of the bspline transformation in

// the finest resolution level.

// Unit: mm.

(FinalGridSpacingInPhysicalUnits 5.0)

(GridSpacingSchedule 4.0 4.0 2.0 1.0)

// ******************* Similarity measure *********************

// Number of grey level bins in each resolution level,

(NumberOfHistogramBins 32)

// Mask serves as region of interest, set it to false.

(ErodeMask "false")

// ******************* Optimizer ****************************

// Maximum number of iterations in each resolution level:

(MaximumNumberOfIterations 500)

// **************** Image sampling **********************

// Number of spatial samples used to compute the mutual

// information (and its derivative) in each iteration.

(NumberOfSpatialSamples 2000)

// Refresh these spatial samples in every iteration, and select

(NewSamplesEveryIteration "true")

(ImageSampler "Random")

// ************* Interpolation and Resampling ****************

// Order of B-Spline interpolation used during registration/optimisation.

// 1 gives linear interpolation.

(BSplineInterpolationOrder 1)

// Order of B-Spline interpolation used for applying the final deformation

(FinalBSplineInterpolationOrder 3)

//Default pixel value for pixels that come from outside the picture:

(DefaultPixelValue -1000)

//SP: Param_a in each resolution level. a_k = a/(A+k+1)^alpha

(SP_a 0.1)

//SP: Param_A in each resolution level. a_k = a/(A+k+1)^alpha

(SP_A 50.0)

//SP: Param_alpha in each resolution level. a_k = a/(A+k+1)^alpha

(SP_alpha 0.6)

// Output

(WriteResultImage "true")

(WriteResultImageAfterEachResolution "false")

(WriteTransformParametersEachIteration "false")

(WriteTransformParametersEachResolution "false")

// The pixel type and format of the resulting deformed moving image

(ResultImagePixelType "float")

(ResultImageFormat "nii")

Appendix C: Parameter File for Registration of Postoperative Open-Wound to Preoperative to

Postoperative Closed-Wound

 Parameter files for registering postoperative open-wound CT to preoperative CT then

registering preoperative CT to postoperative closed-wound CT. Elastix provides the

transformation parameters from the fixed image to the moving. Therefore the flow of work

should be:

1. Register moving preoperative to fixed postoperative open-wound.

2. Transform points from postoperative open-wound to preoperative.

3. Register moving postoperative closed-wound to fixed preoperative.

4. Transform from preoperative to postoperative close-wound.

Deformable transformation parameter file:

// Example parameter file for B-spline registration
// C-style comments: //

(FixedInternalImagePixelType "short")
(MovingInternalImagePixelType "short")

(FixedImageDimension 3)
(MovingImageDimension 3)

// **************** Main Components **************************

// The following components should usually be left as they are:
(Registration "MultiMetricMultiResolutionRegistration")
(Interpolator "BSplineInterpolator")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")

(FixedImagePyramid "FixedRecursiveImagePyramid")
(MovingImagePyramid "MovingRecursiveImagePyramid")

(Optimizer "StandardGradientDescent")
(Transform "BSplineTransform")
(Metric "AdvancedMeanSquares")

// ***************** Transformation **************************

// ******************** Multiresolution **********************

(NumberOfResolutions 4)
(ImagePyramidSchedule 8 8 8 4 4 4 2 2 2 1 1 1)

(FinalGridSpacingInPhysicalUnits 5.0)
(GridSpacingSchedule 4.0 4.0 2.0 1.0)

(HowToCombineTransforms "Compose")

// ******************* Similarity measure *********************

(NumberOfHistogramBins 32)

(ErodeMask "false")

// ******************* Optimizer ****************************

(MaximumNumberOfIterations 2000 4000 8000 8000)

(MaximumStepLength 1.0)

// **************** Image sampling **********************

(NumberOfSpatialSamples 2000)

(NewSamplesEveryIteration "true")
(ImageSampler "Random")

// ************* Interpolation and Resampling ****************

(BSplineInterpolationOrder 1)

(FinalBSplineInterpolationOrder 3)

(DefaultPixelValue -1024)

//SP: Param_a in each resolution level. a_k = a/(A+k+1)^alpha
(SP_a 0.8)

//SP: Param_A in each resolution level. a_k = a/(A+k+1)^alpha
(SP_A 53)

//SP: Param_alpha in each resolution level. a_k = a/(A+k+1)^alpha
(SP_alpha 0.6)

(WriteResultImage "true")
(WriteResultImageAfterEachResolution "false")
(WriteTransformParametersEachIteration "false")
(WriteTransformParametersEachResolution "false")

// The pixel type and format of the resulting deformed moving image
(ResultImagePixelType "float")
(ResultImageFormat "nii")

Appendix D: Code for Registration of Intraoperative Polaris Data to Preoperative Image

Cartesian.m

classdef Cartesian
 % Cartesian Math Package. Contains functions and operations for
 % points in the 3-D space
 properties
 end
 methods(Static)
 %reformat rotation and translation in a 4x4 matrix
 function mat = rearrange(R,p)
 [r,c] = size(R);
 %checks if the given rotation, R is a valid matrix that is 3x3
 if r == 3 && c == 3
 else
 errMsg = ['Invalid rotation matrix, need a 3x3 matrix'...
 'for a 3D space'];
 error(errMsg);
 end ;

 [isP, p] = Cartesian.isVec(p);

 %check if p is a valid translation
 if ~isP
 error('Invalid translation vector');
 end

 mat = [R; 0 0 0];
 p = [p;1];
 mat = [mat, p];
 end
 %reformat a matrix into rotation and translation
 function [R,P] = fDecompose(F)
 [r,c] = size(F);
 %checks if cloud or vector contain 4 points in either
 %directions
 if r == 4
 %if F is a vector
 if c == 1
 R = F(1:3,1);
 P = R;
 else
 R = F(1:3,1:c-1);
 P = F(1:3,c);
 end
 else
 error('Invalid vector of point cloud');
 end
 end
 %reformat a matrix into cloud or point
 function [R,P] = decompose(F)
 [r,c] = size(F);
 %checks if cloud or vector contain 4 points in either
 %directions

 if r == 4
 %if F is a vector
 if c == 1
 R = F(1:3,1);
 P = R;
 else
 R = F(1:3,1:c);
 P = [];
 end
 else
 error('Invalid vector of point cloud');
 end
 end
 %frame transformation given rotation/translation
 function r = transform(vector,R,p)
 %if R is rotation, P is translation
 if nargin == 3
 R = Cartesian.rearrange(R,p);
 if R == 0
 error('Invalid transformation\n');
 end
 end
 %if R is a combined transformation
 if nargin == 2
 [rows,columns] = size(R);
 if rows ~= 4 || columns ~= 4
 error('Invalid transformation\n');
 end
 end

 %checks if input is a point cloud
 [isCloud, cloud] = Cartesian.isCloud(vector);
 %checks if input is a vector
 [isVec, vec] = Cartesian.isVec(vector);

 if isCloud
 width = size(cloud,2);
 r = R*[cloud; ones(1,width)];
 %decomponses, and returns a matrix without extra 1's
 r = Cartesian.decompose(r);
 elseif isVec
 r = R*[vec;1];
 [empty,r] = Cartesian.fDecompose(r);
 else
 error('Invalid input vector or cloud');
 end
 end
 %calculates rotation matrix based on desired angles of rotation
 %relative to each axis (x,y,z)
 function rMat = rotateMat(xang, yang, zang, type)
 if nargin == 4
 if strcmp(type,'Degree') || strcmp(type,'degree')
 xang = xang/180*pi;
 yang = yang/180*pi;
 zang = zang/180*pi;
 end

 end

 %rotation matrix based on each angle
 Rx = [1 0 0;
 0 cos(xang) -sin(xang);
 0 sin(xang) cos(xang)];

 Ry = [cos(yang) 0 sin(yang);
 0 1 0;
 -sin(yang) 0 cos(yang)];

 Rz = [cos(zang) -sin(zang) 0;
 sin(zang) cos(zang) 0;
 0 0 1];

 %returns combination of matrices
 rMat = Rx * Ry * Rz;
 end
 %rotates vector or group of vectors based on provided angles,
 %rejects if p is not a vector
 function r = rotate(p, xang, yang, zang, type)
 if nargin == 5
 Rtot = Cartesian.rotateMat(xang,yang,zang,type);
 else
 Rtot = Cartesian.rotateMat(xang,yang,zang);
 end

 Rtot = Cartesian.rearrange(Rtot, [0 0 0]);
 r = Cartesian.transform(p, Rtot);
 end
 %translates a vector or points cloud, rejects if p or P is not
 %a vector or a singular value
 function r = translate(p, P)
 r = Cartesian.transform(p,eye(3),P);
 end
 %rotate vector at an angle around x axis
 function r = xrotate(p,xang,type)
 if nargin == 3
 r = Cartesian.rotate(p,xang,0,0,type);
 else
 r = Cartesian.rotate(p,xang,0,0);
 end
 end
 %rotate vector at an angle around y axis
 function r = yrotate(p,yang,type)
 if nargin == 3
 r = Cartesian.rotate(p,0,yang,0,type);
 else
 r = Cartesian.rotate(p,0,yang,0);
 end
 end
 %rotate vector at an angle around z axis
 function r = zrotate(p,zang,type)
 if nargin == 3
 r = Cartesian.rotate(p,0,0,zang,type);
 else

 r = Cartesian.rotate(p,0,0,zang);
 end
 end
 %find the inverse of a transformation
 function Finv = inverse(r,p)

 Finv = 0;
 %if there are two inputs
 if nargin == 2
 [isP, p] = Cartesian.isVec(p);
 [row,col] = size(r);

 if ~(row == 3 && col == 3)
 fprintf('Invalid rotation matrix, need a ');
 fprintf('3x3 matrix for a 3D space\n');
 return;
 else
 R = r;
 end

 if ~isP
 fprintf('Invalid transformation\n');
 return;
 end
 %if there is only one combined transformation r
 else
 [R,P] = Cartesian.fDecompose(r);
 end

 %calculate inverse rotation/translation
 Rinv = R^-1;
 Pinv = -1*Rinv*P;

 Finv = [[Rinv; 0 0 0],[Pinv;1]];
 end
 %inverse frame transformation of a vector or cloud
 function r = invTransform(vector,R,p)

 if nargin == 3
 F = Cartesian.inverse(R,p);
 else
 F = Cartesian.inverse(R);
 end

 r = Cartesian.transform(vector,F);
 end
 %average of 3D point cloud
 function avr = cloudAvr(p)
 avr = [mean(p(1,:));
 mean(p(2,:))
 mean(p(3,:))];
 end
 %error of 3D point cloud set
 function [avr,err] = cloudErr(p)
 avr = Cartesian.cloudAvr(p);

 %subtract average from all vectors
 err = p - avr(:,ones(1,size(p,2)));
 end
 end
 methods(Static, Access = private)
 %checks if an array is a 3-D vector
 function [cond, vector] = isVec(p)
 [r,c] = size(p);
 vector = p;
 %horizontal vector
 if r == 1 && c == 3
 cond = true;
 %returns vertical vector
 vector = p';
 %vertical vector
 elseif r == 3 && c == 1
 cond = true;
 else
 cond = false;
 end
 end
 %checks if a matrix is a 3-D cloud
 function [cond, cloud] = isCloud(p)
 cond = false;
 cloud = p;
 [r,c] = size(p);

 %if not a vector
 if ~Cartesian.isVec(p)
 %if already in correct orientation
 if r == 3
 cond = true;
 %if not in correct orientation, but valid cloud
 elseif c == 3
 cond = true;
 cloud = p';
 end
 end
 end
 end
end

SetsReg.m

function F = SetsReg(a,b)
% @param a 3D point cloud
% @param b transformed 3D point cloud
% @return F a 4x4 containing R,P

% calculates the average location and
% the error of each vector
% step 1

 [avgA, qA] = Cartesian.cloudErr(a);
 [avgB, qB] = Cartesian.cloudErr(b);

 if size(a,2) ~= size(b,2)
 error('The clouds contained different amounts of points');
 end

% Calculation for the Rotation portion of the transformation

% summation of error
% step 2 from paper
 H = zeros(3);
 for i = 1:size(a,2) % 1:num_columns
 H = H + qA(:,i)*transpose(qB(:,i));
 end

% Calculation of the delta and the G matrix
% step 3
 G = zeros(4);
 delta = zeros(1,3);
 delta = [H(2,3)-H(3,2), H(3,1)-H(1,3), H(1,2)-H(2,1)];
 G = [trace(H), delta;
 delta', H + H' - trace(H)*eye(3)];

% Finding the quaternion by finding the largest eigenvalue of G and its
% corresponding eigenvector
% step 4
 eigvects = zeros(4);
 eigvals = zeros(4);
 [eigvects, eigvals] = eig(G);
 max_eig = -inf;
 max_col = 0;
 for i = 1:4
 if eigvals(i,i) > max_eig
 max_eig = eigvals(i,i);
 max_col = i;
 end
 end
 quat = eigvects(:,max_col);

% Computing R using the quaternion
 q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4);
 R = [q0^2+q1^2-q2^2-q3^2, 2*(q1*q2-q0*q3), 2*(q1*q3+q0*q2);
 2*(q1*q2+q0*q3), q0^2-q1^2+q2^2-q3^2, 2*(q2*q3-q0*q1);

 2*(q1*q3-q0*q2), 2*(q2*q3+q0*q1), q0^2-q1^2-q2^2+q3^2];

% Compute the translation vector
 P = avgB - R*avgA;

% Combine total transformation into a 4x4
 F = Cartesian.rearrange(R,P);
end

circlefit3d.m

function [center,rad,v1n,v2nb] = circlefit3d(p1,p2,p3)
% circlefit3d: Compute center and radii of circles in 3d which are defined by

three points on the circumference
% usage: [center,rad,v1,v2] = circlefit3d(p1,p2,p3)
%
% arguments: (input)
% p1, p2, p3 - vectors of points (rowwise, size(p1) = [n 3])
% describing the three corresponding points on the same circle.
% p1, p2 and p3 must have the same length n.
%
% arguments: (output)
% center - (nx3) matrix of center points for each triple of points in p1,

p2, p3
%
% rad - (nx1) vector of circle radii.
% if there have been errors, radii is a negative scalar (= error

code)
%
% v1, v2 - (nx3) perpendicular vectors inside circle plane
%
% Example usage:
%
% (1)
% p1 = rand(10,3);
% p2 = rand(10,3);
% p3 = rand(10,3);
% [center, rad] = circlefit3d(p1,p2,p3);
% % verification, result should be all (nearly) zero
% result(:,1)=sqrt(sum((p1-center).^2,2))-rad;
% result(:,2)=sqrt(sum((p2-center).^2,2))-rad;
% result(:,3)=sqrt(sum((p3-center).^2,2))-rad;
% if sum(sum(abs(result))) < 1e-12,
% disp('All circles have been found correctly.');
% else,
% disp('There had been errors.');
% end
%
% (2)
% p1=rand(4,3);p2=rand(4,3);p3=rand(4,3);
% [center,rad,v1,v2] = circlefit3d(p1,p2,p3);
% plot3(p1(:,1),p1(:,2),p1(:,3),'bo');hold

on;plot3(p2(:,1),p2(:,2),p2(:,3),'bo');plot3(p3(:,1),p3(:,2),p3(:,3),'bo');
% for i=1:361,
% a = i/180*pi;
% x = center(:,1)+sin(a)*rad.*v1(:,1)+cos(a)*rad.*v2(:,1);

% y = center(:,2)+sin(a)*rad.*v1(:,2)+cos(a)*rad.*v2(:,2);
% z = center(:,3)+sin(a)*rad.*v1(:,3)+cos(a)*rad.*v2(:,3);
% plot3(x,y,z,'r.');
% end
% axis equal;grid on;rotate3d on;
%
%
% Author: Johannes Korsawe
% E-mail: johannes.korsawe@volkswagen.de
% Release: 1.0
% Release date: 26/01/2012

% Default values
center = [];rad = 0;v1n=[];v2nb=[];

% check inputs
% check number of inputs
if nargin~=3,
 fprintf('??? Error using ==> cirlefit3d\nThree input matrices are

needed.\n');rad = -1;return;
end
% check size of inputs
if size(p1,2)~=3 || size(p2,2)~=3 || size(p3,2)~=3,
 fprintf('??? Error using ==> cirlefit3d\nAll input matrices must have

three columns.\n');rad = -2;return;
end
n = size(p1,1);
if size(p2,1)~=n || size(p3,1)~=n,
 fprintf('??? Error using ==> cirlefit3d\nAll input matrices must have the

same number or rows.\n');rad = -3;return;
end
% more checks are to follow inside calculation

% Start calculation
% v1, v2 describe the vectors from p1 to p2 and p3, resp.
v1 = p2 - p1;v2 = p3 - p1;
% l1, l2 describe the lengths of those vectors
l1 = sqrt((v1(:,1).*v1(:,1)+v1(:,2).*v1(:,2)+v1(:,3).*v1(:,3)));
l2 = sqrt((v2(:,1).*v2(:,1)+v2(:,2).*v2(:,2)+v2(:,3).*v2(:,3)));
if find(l1==0) | find(l2==0), %#ok<OR2>
 fprintf('??? Error using ==> cirlefit3d\nCorresponding input points must

not be identical.\n');rad = -4;return;
end
% v1n, v2n describe the normalized vectors v1 and v2
v1n = v1;for i=1:3, v1n(:,i) = v1n(:,i)./l1;end
v2n = v2;for i=1:3, v2n(:,i) = v2n(:,i)./l2;end
% nv describes the normal vector on the plane of the circle
nv = [v1n(:,2).*v2n(:,3) - v1n(:,3).*v2n(:,2) , v1n(:,3).*v2n(:,1) -

v1n(:,1).*v2n(:,3) , v1n(:,1).*v2n(:,2) - v1n(:,2).*v2n(:,1)];
if find(sum(abs(nv),2)<1e-5),
 fprintf('??? Warning using ==> cirlefit3d\nSome corresponding input

points are nearly collinear.\n');
end
% v2nb: orthogonalization of v2n against v1n
dotp = v2n(:,1).*v1n(:,1) + v2n(:,2).*v1n(:,2) + v2n(:,3).*v1n(:,3);
v2nb = v2n;for i=1:3,v2nb(:,i) = v2nb(:,i) - dotp.*v1n(:,i);end

% normalize v2nb
l2nb =

sqrt((v2nb(:,1).*v2nb(:,1)+v2nb(:,2).*v2nb(:,2)+v2nb(:,3).*v2nb(:,3)));
for i=1:3, v2nb(:,i) = v2nb(:,i)./l2nb;end

% remark: the circle plane will now be discretized as follows
%
% origin: p1 normal vector on plane: nv
% first coordinate vector: v1n second coordinate vector: v2nb

% calculate 2d coordinates of points in each plane
% p1_2d = zeros(n,2); % set per construction
% p2_2d = zeros(n,2);p2_2d(:,1) = l1; % set per construction
p3_2d = zeros(n,2); % has to be calculated
for i = 1:3,
 p3_2d(:,1) = p3_2d(:,1) + v2(:,i).*v1n(:,i);
 p3_2d(:,2) = p3_2d(:,2) + v2(:,i).*v2nb(:,i);
end

% calculate the fitting circle
% due to the special construction of the 2d system this boils down to solving
% q1 = [0,0], q2 = [a,0], q3 = [b,c] (points on 2d circle)
% crossing perpendicular bisectors, s and t running indices:
% solve [a/2,s] = [b/2 + c*t, c/2 - b*t]
% solution t = (a-b)/(2*c)

a = l1;b = p3_2d(:,1);c = p3_2d(:,2);
t = 0.5*(a-b)./c;
scale1 = b/2 + c.*t;scale2 = c/2 - b.*t;

% centers
center = zeros(n,3);
for i=1:3,
 center(:,i) = p1(:,i) + scale1.*v1n(:,i) + scale2.*v2nb(:,i);
end

% radii
rad = sqrt((center(:,1)-p1(:,1)).^2+(center(:,2)-p1(:,2)).^2+(center(:,3)-

p1(:,3)).^2);

columnReformat.m

function r = columnReformat(column, n)
%Convert column of data to matrix of 3 x N/3
% Convert a Nx1 column of data into a processed column of n x N/n.
% Example: input ([1;2;3;4;5;6], 3)
% output [1 2 3; 4 5 6]

 N = length(column);
 r = ones(n, N/n);
 for i = 1:N/n
 adjust = n*(i-1);
 r(:,i) = column(1+adjust:n+adjust, 1);
 end
end

intra2pre.m

clc;
clear all;

% Voxel values
Xscale = 2.078;
Yscale = Xscale;
Zscale = 0.8;
p = 1;
t = p;

%User changed CT fiducial locations
ct = round([65 115 120
119 173 223
173 120 155
108 119 346
121 108 16]);
ct = ct';

% Read in Polaris points based on specific formating
% polarisData2pt takes name in String as an input
polaris = zeros(5,3);
for i = 1:5
 [polaris(i,1) polaris(i,2) polaris(i,3)] =

polarisData2Pt(strcat('Pig',num2str(p),'/fiducial',num2str(i),'/P0A-

3910F400.txt'));
 %[polaris(i,1) polaris(i,2) polaris(i,3)] =

polarisData2Pt(strcat('Pig3ErrorCheck/fiducial',num2str(i),'/P0A-

3910F400.txt'));

end
%adjust for y
polaris(:,2) = -1*polaris(:,2);
polaris = polaris';

%convert ct voxel values to proper dimensions
ctActual(1,:) = Xscale*ct(1,:);
ctActual(2,:) = Yscale*ct(2,:);
ctActual(3,:) = Zscale*ct(3,:);

% Find relationship between the polaris and CT
F = SetsReg(polaris, ctActual);

% Find translated CT
transP = Cartesian.transform(polaris,F);
transPCT(1,:) = transP(1,:)/Xscale;
transPCT(2,:) = transP(2,:)/Yscale;
transPCT(3,:) = transP(3,:)/Zscale;
transPCT = round(transPCT);

% Read in Tongue points based on specific formating
% TongueData2pt takes name in String as an input

tongue = zeros(4,3);
for i = 1:4
 [tongue(i,1) tongue(i,2) tongue(i,3)] =

TongueData2Pt(strcat('Pig',num2str(p),'/tongue', num2str(i),'/P0A-

3910F400.txt'));
 %S[tongue(i,1) tongue(i,2) tongue(i,3)] =

TongueData2Pt(strcat('Pig3ErrorCheck/tongue', num2str(i),'/P0A-

3910F400.txt'));

end

%expand and transform the polaris intraop points
tongue(:,2) = -1*tongue(:,2);
tongue = tongue';
transT = Cartesian.transform(tongue,F);

%convert back into voxel values
ctPath(1,:) = transT(1,:)/Xscale;
ctPath(2,:) = transT(2,:)/Yscale;
ctPath(3,:) = transT(3,:)/Zscale;
ctPath = round(ctPath);

% %Uncomment to see the translate polaris versus the CT in the
% %CT coordinate
% figure
% scatter3(transPCT(1,:),transPCT(2,:),transPCT(3,:),'x');
% labels = cellstr(num2str([1:5]'));
% text(transPCT(1,:),transPCT(2,:),transPCT(3,:),labels);
% hold on
% scatter3(ct(1,:),ct(2,:),ct(3,:),'o');
% xlabel('X');
% ylabel('Y');
% zlabel('Z');
% legend('Polaris','CT');
% title('Polaris and CT Matching');
% hold off

% %Uncomment to see the polaris versus tongue in original
% figure
% scatter3(polaris(1,:),polaris(2,:),polaris(3,:),'x');
% labels = cellstr(num2str([1:5]'));
% text(polaris(1,:),polaris(2,:),polaris(3,:),labels);
% hold on
% scatter3(tongue(1,:),tongue(2,:),tongue(3,:),'o');
% xlabel('X');
% ylabel('Y');
% zlabel('Z');
% legend('Polaris','Tongue');
% title('Polaris and Tongue');
% hold off

% %Uncomment to see the translate polaris fiducial and tongue versus
% %the CT in the CT coordinate
% figure
% scatter3(transPCT(1,:),transPCT(2,:),transPCT(3,:),'x');
% labels = cellstr(num2str([1:5]'));

% text(transPCT(1,:),transPCT(2,:),transPCT(3,:),labels);
% hold on
% scatter3(ct(1,:),ct(2,:),ct(3,:),'o');
% scatter3(ctPath(1,:),ctPath(2,:),ctPath(3,:),'o');
% xlabel('X');
% ylabel('Y');
% zlabel('Z');
% legend('Polaris','CT','Tongue');
% title('Polaris and CT Matching');
% hold off

% Records results
fID = fopen('RESULTS.txt','wt');
fprintf(fID, 'ct\n');
fprintf(fID, '%i %i %i\n', ct);
fprintf(fID, '\npolaris\n');
fprintf(fID, '%i %i %i\n', transPCT);
fprintf(fID, '\ntongue\n');
fprintf(fID, '%i %i %i\n', ctPath);
fclose(fID);

polarisData2Pt.m

% Retrieve polaris point based on data
function [X Y Z] = polarisData2Pt(filename)
 close all;
 %% Retrieve Data
 data = fileread(filename);
 oov = strfind(data,'OOV');
 data = data(oov+3:end);
 data = regexprep(data,' ','');
 data = sscanf(data,'%f,%f,%f,%f,%f,%f,%f,%f,%f,%f');
 data = columnReformat(data,10);
 [~,w] = size(data);

 x1 = data(6,1);
 y1 = data(7,1);
 z1 = data(8,1);
 dVec = [];

 %% Estimate diameter by using longest distance
 for i = 1:w
 dVec = [dVec, distance(x1,y1,z1,data(6,i),data(7,i),data(8,i))];
 end

 %% Fit Circle
 where = find(dVec == max(dVec));
 % Circle fit provided by Johannes Korsawe
 % http://www.mathworks.com/matlabcentral/fileexchange/34792-circlefit3d-

fit-circle-to-three-points-in-3d-space
 [c,~,~,~] = circlefit3d([x1,y1,z1], [data(6,5),data(7,5),data(8,5)],

[data(6,where),data(7,where),data(8,where)]);
 X = c(:,1);
 Y = c(:,2);

 Z = c(:,3);
end

function d = distance(x,y,z, x1, y1, z1)
 d = sqrt((x-x1)^2 + (y - y1)^2 + (z-z1)^2);
end

TongueData2Pt.m

function [X Y Z] = TongueData2Pt(filename)
 close all;
 %% Retrieve Data from Polaris Recording
 data = fileread(filename);
 oov = strfind(data,'OOV');
 data = data(oov+3:end);
 data = regexprep(data,' ','');
 data = sscanf(data,'%f,%f,%f,%f,%f,%f,%f,%f,%f,%f');
 data = columnReformat(data,10);

 %% Average Recorded Values
 X = data(6,:);
 Y = data(7,:);
 Z = data(8,:);
 X = mean(X);
 Y = mean(Y);
 Z = mean(Z);
end

