Check Point Presentation

Position Control of BIGSS Lab Snake for

 Revision Total Hip Arthroplasty (THA) Surgery

Project 6: Farshid Alambeigi

Mentors:

Dr. Mehran Armand, Ryan Murphy, Dr. Russell Taylor

Overview of Goals

> The BIGSS lab is developing a minimally-invasive surgical workstation to treat the osteolytic lesions using using a snake like dexterous manipulator (SDM).
> The SDM will be positioned in the workspace by a robotic arm.
$>$ The focus of this project is integrating the SDM with the robotic arm- which is a 6 DOF Universal Robot (UR5) - and position control of the tip of the SDM inside the lesion area.

Figure are property of BIGSS Lab.

Deliverables

Minimum

> Deriving and implementing the kinematic equations of UR5: ©
$>$ Interfacing the SDM with UR5 (Mechanical design and fabrication) : $:$
>Coupled inverse control of robots outside the body: ;)

Expected

>Controlling the position of the coupled robots using virtual RCM when all of the SDM is in the body (Simulation and implementation) : © + +

Maximum

$>$ Controlling the position of the coupled robots using virtual RCM when all of the SDM is not in the body (Simulation and implementation)
> Modeling the kinematics of SDM using solid mechanics or beam theory

Management Plan

Sensing + Robotics

Amentrocivicenoor

Technical Summary of Approach

Technical Summary of Approach

Part IV: Position Control of the tip of the SDM
Strategy: Using virtual fixture algorithms to control the SDM by UR5

Technical Summary of Approach
> Optimization Algorithm: (CIS I course)

$$
\text { Actual Position }={\underline{\text { forward }}{ }^{\text {kinematics }}}_{\text {UR5 }+ \text { Snake }}\left(\theta_{\text {OId }}\right)
$$

$\Delta_{\text {pos }}=$ Actual Position - Desired Position
$V=J \cdot \dot{\theta} \rightarrow \frac{\Delta x}{\Delta t}=J \cdot \frac{\Delta \theta}{\Delta t} \rightarrow \Delta x=J \cdot \Delta \theta$
$\Delta q=\arg \min _{\Delta \theta}\left(\| \|_{\text {total }} . \Delta \theta-\Delta_{\text {pos }}\|+\| w . \Delta \theta \|\right)$
A. $\Delta x \leq b$
$\theta_{\text {New }}=\theta_{\text {Old }}+\Delta \theta$
$>$ For solving this problem we need:
\checkmark Forward Kinematics of coupled robots
\checkmark Jacobian matrix of coupled robots
\checkmark Finding the $\underline{\mathbf{A} \text { and } \mathbf{b}}$ Matrices which are defining our constraints (RCM constraint+
Limitation on cable length and joint angles)
> For solving the problem, first I considered the UR5 robot and its actuation unit which can be considered as a rigid rod attached to the UR5.
> I have considered the RCM Point as a constraint: the RCM point should always be on the rigid rod. (Details of the algorithm will be discussed in the Seminar Presentation)
$>$ In this problem we just need the Jacobian matrix of UR5+Rigid rod:

$$
J_{\text {total }}=J_{U R 5+R o d} ; J_{J_{U R 5+R o d}} \in \mathbb{R}^{6 \times 6}
$$

Simulation (UR5+Snake Actuation unit)

> Goal:
Tracking a desired circular path considering RCM constraint

Technical Summary of Approach (UR5+SDM unit)

> Therefore we can find the relation between change in cable length and change of tip position by:

$$
V_{\text {Snaketeip }}^{\text {Snase }}=\dot{p}_{\text {Snaketetip }}^{\text {Snate }}=\left(\begin{array}{l}
\dot{p}_{x} \\
\dot{p}_{y} \\
\dot{p}_{z}
\end{array}\right)=\left(\begin{array}{c}
\dot{f}_{1}(l) \\
0 \\
\dot{f}_{2}\left(f_{1}(l)\right)
\end{array}\right)
$$

>Figures show the relation between cable length and tip position and velocity:
 Sensing + Robotics

Technical Summary of Approach (UR5+SDM unit)

$>$ Therefore we can find the Jacobian Matrix of couples robot using this equation:

$$
\begin{aligned}
& J_{\text {total }}=\left[\begin{array}{ll}
J_{\text {UR5 }} & J_{\text {Snake }}
\end{array}\right] ; J_{\text {UR5 } 5} \in \mathbb{R}^{6 \times 6}, J_{\text {Snake }} \in \mathbb{R}^{3 \times 1}
\end{aligned}
$$

JOHNS HOPKINS
 BIGSS BIGSS cilis

Simulation (UR5+SDM unit)

> Goal:
Tracking a desired circular path considering RCM constraint and cable length limitation

JOHNS HOPKINS | whrting school |
| :---: |
| of ENGINEERING |

BIGSS
Bics
cils (1) $\begin{aligned} & \text { Compurtational } \\ & \text { Sensing }+ \text { Robotics }\end{aligned}$ $A P L$

