
Constrained Control for Surgical Assistant Robots

Ankur Kapoor, Ming Li and Russell H. Taylor
Dept. of Computer Science

Johns Hopkins University

{kapoor,liming,rht@cs.jhu.edu}

Abstract— This paper presents an approach to implement
virtual fixtures for surgical robot assistants. Our approach uses a
weighted, multi-objective (both linear and nonlinear) constrained
optimization framework to formalize a library of virtual fixtures
for task primitives. By our formulation, we provide a library
of virtual fixtures on task primitives and a way to assemble
multiple virtual fixture objects. We implement the constrained
optimization problem with both linear and nonlinear constraints,
and discuss the trade-offs between them. Moreover, we introduce
the notion of “soft” virtual fixture mechanism for robotic surgical
assistance. The “soft” virtual fixtures enable a surgical tool to
have some resistance inside safety regions and no resistance in
preferred regions.

I. INTRODUCTION

This paper presents an approach to implement virtual fix-

tures for surgical robot assistants. Most robotic assisted sur-

gical procedures are characterized by restricted access to the

workspace as well as constrained manipulation of a surgical

tool. In such cases, the surgeons’ ability can be augmented by

techniques such as virtual fixtures (VF). Virtual fixtures [1],

which have been discussed previously in the literature for

both telerobotic and cooperative robots, are algorithms which

provide anisotropic behavior to surgeons’ motion commands in

addition to filtering out tremor to provide safety and precision.

An important case of virtual fixtures is forbidden regions,

where the surgical tool is restricted to certain regions in the

workspace. Davies et al. [2] set active constraints to constrain

the robot to cut the femur and tibia within a permitted region

for prosthetic knee surgery. Park et al. [3] developed sensor-

mediated virtual fixtures that constrain the robot’s motion

or create haptic feedback directing the surgeon to move the

surgical instruments in a desired direction. The recent work

by Bettini et al. on virtual fixtures [4] used admittance control

laws to implement guidance virtual fixtures. These works are

based either on a specific robot type or on a specific task.

Path planning and motion control is a well discussed area

with a wide variety of proposed optimality criteria [5], [6],

[7], [8]. Funda et al. [9] presented an optimal motion control

method to control both redundant and deficient robotic systems

in constrained working volumes. We extend Funda’s work by

applying the method to generate complicated virtual fixtures

based on user input for surgical assistant robots.

Typically, surgical tasks have a certain degree of uncertainty

that arises from factors such as registration errors, variations in

anatomy and changes during procedures. Consider an example

task of placing a surgical tool at a point in space. Depending

on the nature of the procedure, one can define a region

and tool placement within this region that would lead to the

expected outcome. This region could be on the order of a few

microns for retinal vein cannulation or hundreds of microns

for a biopsy procedure. Furthermore, we can define another

region where the surgeon might deliberately want to place

the instrument to account for some uncertainties inherent in

surgical procedures. In other words, we would like to have

some compliance in the virtual fixture, while maintaining a

preferred motion. Therefore, we define 3 different regions:

A) Preferred region: this region defines expected outcome.

B) Safety region: the tool could temporarily be in this region

for fulfilling some expected task.

C) Forbidden region: The tool never could be here for safety

purposes.

The relationship of these three regions depends on the surgical

task. Figure 1 shows two typical examples.

Fig. 1. Two examples of relationship between (A) Preferred region, (B)
Safety region and (C) Forbidden region.

In this work we formalize a library of virtual fixtures for

task primitives. Our paradigm covers the implementation of

guidance virtual fixtures, and forbidden region virtual fixtures,

with both “hard” and “soft” constraints. Our approach uses a

weighted, multi-objective optimization framework to solve for

incremental joint motion given the instantaneous kinematics

of the manipulator and the geometric constraints. Note that

we treat the robot as a purely kinematic device, independent

of manipulator characteristic: teleoperative or cooperative con-

trolled; admittance or impedance type.
In this paper, we first describe a general constrained motion

control form for virtual fixtures, followed by constraint setup

of the optimization problem for five basic task primitives. For

each constraint type we explore the effects on performance

of “hard” and “soft” fixtures. We compare two different

algorithms for implementation of these constraints. Finally,

we report and discuss the experimental results.

II. CONSTRAINED MOTION CONTROL FOR VIRTUAL

FIXTURES

Virtual fixtures are task-dependent computer-generated con-

straints, which help a robotic manipulator perform a task by

Proceedings of the 2006 IEEE International Conference on Robotics and Automation
Orlando, Florida - May 2006

0-7803-9505-0/06/$20.00 ©2006 IEEE 231

Farshid
Highlight

Farshid
Highlight

limiting its movement into restricted regions and/or influenc-

ing its movement along desired paths. In considering virtual

fixtures for a surgical assistant robot, it is important to be able

to place absolute bounds on the spatial motion of the different

parts of the instrument as well as to specify desired nominal

motions.

We define different task frames associated with different

parts of the instrument. For each of the task frames, we define

actual state variables x and desired state variables xd. The

state, x = x(q+Δq) is a function of joint variables q and joint

incremental motion Δq. The desired state, xd = xd(τ , q) is

a function of users input τ and joint variables q.

We can formulate a constrained optimization problem to

generate the constrained motion for a certain task frame. The

most general formulation for this problem is:

Δqcmd = arg min
Δq

C(x(q + Δq), s,xd)

s.t. A(x(q + Δq), s) ≤ b,

sup ≥ s ≥ slow ≥ 0; Δqup ≥ Δq ≥ Δqlow

(1)

where C(x(q+Δq), s,xd) is the objective function associated

with the difference between the actual state variables x and the

desired state variables xd. The inequality A(x(q +Δq), s) ≤
b represents the constraint conditions. s is a vector of slack

variables sj . These constraints are used to force the solution

vector Δqcmd to satisfy certain critical requirements, such as

restricting the motion of a certain part of the instrument within

a strict motion envelope. The inclusion of s in the objective

function provides a means of implementing “soft” constraints

which may not need to be strictly enforced.

We can generate complicated constrained motions by com-

bining the constrained motions on different task frames. If

wi is the weight associated with the task frame {i} then

the complicated virtual fixtures generated by constraining task

frames {i, (i = 1, ..., N)} can be formulated as

Δqcmd = arg min
Δq

N∑
i=1

wiCi(xi(q + Δq), si,x
d
i)

s.t. Ai(xi(q + Δq), si) ≤ bi,

si,up ≥ si ≥ si,low ≥ 0; Δqup ≥ Δq ≥ Δqlow

i = 1, · · · , N.

(2)

where wi gives the relative importance of minimizing the

objective function error for different task frames.

The combination of a weighted objective function and an

additional set of task constraints allows us to exploit the

geometry of a particular task space motion and effectively

trade off the various performance criteria.

Surgical robots often are kinematically redundant for the

purpose of providing dexterous assistance. At the same time,

task constraints such as the requirement that a tool pass

through a cavity restricts dexterity [9]. Indeed, some special-

purpose designs for minimally invasive surgery, such as the

IBM LARS [10] and the JHU Steady Hand robot [11], may

be kinematically deficient. Other robots such as the Intuitive

daVinci [12] and Endorobotics [13] combine a kinematically

constrained remote center of motion (RCM) mechanism with

a kinematically redundant wrist. The ability to accommo-

date unique, special purpose mechanical designs (such as

kinematically redundant or deficient) is important as well.

Our formulation could easily integrate any behavior, such as

asserting joint limitation for kinematically redundant robot or

incorporating haptic information in the control strategy.

We discuss virtual fixtures for five task primitives. We model

the robot task frame as a purely kinematic Cartesian device

with the tool position xp ∈ R3 and the tool orientation given

by unit vector l̂t ∈ R3. The names and descriptions of these

task primitives are listed.

1) Stay on a point: Keep the tool position xp on the

reference position x0.

2) Maintain a direction: Keep the tool orientation l̂t
aligned with the reference direction l̂r.

3) Move along a line: Keep the tool position xp on line

L which has the direction l̂r and passes through point

x0. At the same time, the tool should move along L
proportional to the users input τ .

4) Rotate around a line: Keep the tool orientation l̂t
perpendicular to line L which has the direction l̂r and

passes through point x0. At the same time, the tool

should rotate around L proportional to the users input

τ .

5) Stay above a plane: Keep the tool position xp above the

plane Π that has the normal direction d̂ pointing to the

free half space and passes through point x0. At the same

time, the movement of the tool should be proportional

to the users input τ .

For each of these primitives, we can define a desired

nominal behavior together with constraints specifying how far

actual behavior can differ from the nominal. Terms are added

to the objective function to derive the desired motion related

to the user’s input, while the constraints place an absolute

bound on the motion. Table I shows the nominal errors and

constraints for five task primitives.

By our formulation, we provide a library of virtual fixtures

on task primitives and a way to assemble multiple virtual

fixture objects. Customized virtual fixtures for complicated

surgical tasks can be treated as the combination of one or more

objects assigned on single or multiple task frames. Figure 2

shows the concept of generating customized virtual fixtures

from the virtual fixture library.

Fig. 2. Customized virtual fixture

232

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

TABLE I

THE NOMINAL ERROR TERMS AND CONSTRAINTS FOR FIVE TASK

PRIMITIVES

Task Primitives Nominal Error Term Constraints

Stay on a point δp = xp − x0
1
2‖δp‖2

2 ≤ εm

Maintain a direc-

tion

δr = l̂t × l̂r
1
2‖δr‖2

2 ≤ εm

Move along a line δp = RT
p [xp − x0

−[(xp − x0) · l̂r]̂lr]

‖δp(1)2+δp(2)2‖2
2 ≤ εm

Rotate around a

line

δr = RT
r

×[
l̂t−l̂r (̂lt ·̂lr)

‖l̂t−l̂r (̂lt ·̂lr)‖2
×l̂t]

‖δr(1)2+δr(2)2‖2 ≤ εm

Stay above a

plane

d̂
T · xp−x0

‖xp−x0‖2
d̂

T · (xp − x0) ≥ εm

Rp and Rr are rotation matrices that would transform a plane Π

perpendicular to l̂p and l̂r respectively to world coordinates. The
maximum allowed error is denoted by εm, a small positive number.
δ(i) represents the ith component of vector δ

III. OUR CONSTRAINED CONTROL ALGORITHM

A. Algorithm Overview

The general form of the optimization problem in (1) has

many variants, both for the objective function and constraints.

Our objective function is a two-norm, ‖ ·‖2 of motion error in

different task frames. We use robotic instantaneous kinematics

to map the different task frames to joint variables, and set an

optimization problem over incremental joint motion Δq. The

objective function is expressed as

C(x(q + Δq), s,xd)
=

∥∥x(q + Δq) − xd
∥∥2

2
+ ‖wss‖2

2

=
∥∥x(q) + J(q) · Δq − (x(q) + Δxd)

∥∥2

2
+ ‖wss‖2

2

=
∥∥J(q) · Δq − Δxd

∥∥2

2
+ ‖wss‖2

2

(3)

We assume that the robot is holding the surgical instrument.

The instruments and all the constraints are known in the robot

coordinate frame. The basic control loop repeats the following

steps:

Step 1: Describe a desired incremental motion of the

surgical instrument based upon user inputs τ . In order to

make the system intuitive, the incremental motion should be

proportional to the user input.

Step 2: Analyze and decompose the task into task primitives

for different task frames. Set the basic geometric constraints

on each task frame.

Step 3: Use the robot and the task kinematic equations to

produce a new constrained optimization problem, in which the

instrument motion variables and other task variables have been

projected onto incremental joint variables. This problem has

the form:

arg min
Δq

N∑
i=1

wi(
∥∥(Δxi − Δxd

i)
∥∥2

2
+ ‖ws,i · si‖2

2)

s.t. A(Δxi) − si ≤ bi, Δxi = Ji · Δq,

si,up ≥ si ≥ si,low ≥ 0, Δqup ≥ Δq ≥ Δqlow

(4)

where Δq is the desired incremental motions of the joint

variables. Δxi and Δxd
i , i = 1, ..., n represent computed and

desired variables of different task spaces, respectively. Δxd

includes the user input kτ where τ is the user input and k is

a scalar for tuning the ratio between the incremental motion

and the desired input. The user input could be obtained from

a force sensor or from a master robot. To ensure safety we

can also define an upper bound for the incremental motion

magnitude. Ji is the Jacobian matrix relating task space i to the

robot joint space. wi defines weights selected so that the errors

of critical motion elements are close to zero, while errors

in other non-critical motions simply stay as low as possible

within tolerances allowed by the constraint set. We must

ensure proper scaling of weights corresponding to different

components. Otherwise, the result of the optimization Δq will

be skewed, causing incorrect control behavior. ws,i, determines

the turning of “softness” of the constraints on the ith task

frame. The greater the value of ws,i the harder the constraint,

that is it is harder for user to deviate from preferred region.

Step 4: Use known numerical methods [14] [15] to compute

incremental joint motions Δq, and use these results to move

the robot.

B. Linear Approximations

There are computational trade-offs between linearly con-

strained and nonlinearly constrained least squares problems.

The algorithms for solving linearly constrained least squares

problems (such as least squares inequality methods, active set

methods, etc.) are usually less complex than the algorithms

for solving the nonlinearly constrained least squares problems

(such as reduced-gradient methods, sequential quadratic pro-

gramming methods, etc.). Solving linearly constrained least

squares problem can take less computation time.

In this section we present a specialized form of (1) to pro-

duce a quadratic optimization problem with linear constraints

of the form of (5). The computation for a linear constrained

quadratic optimization problem is efficient and robust.

A · Δx − s ≤ b,
sup ≥ s ≥ slow ≥ 0,

Δqup ≥ Δq ≥ Δqlow

(5)

In the linear approximation, we use a set of hyperplanes

to bound a polyhedron to approximate a geometric constraint

region. For example, the constraints 1
2‖δp‖2

2 ≤ εm in Ta-

ble I defines a spherical error tolerance region. We could

easily generate a polyhedron bounding the sphere as shown

in Figure 3. Obviously, one possible method to guarantee

the solution of the linearized optimization problem falling

inside the inscribed sphere is to increase the number of the

hyperplanes. As the number of the hyperplanes increases,

the volume of the polyhedron reduces and the polyhedron

approaches the inscribed sphere.

However, more linear constraints require more time to solve

the optimization problem. The loss of efficiency can be more

prominently noticed in the case of soft constraints, where a

slack variable is associated with each constraint. An increase

233

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

in the number of constraints implies an increase in the number

of variables to solve. Moreover, when linear constraints are

used to approximate nonlinear constraints, some error may

be introduced into the system and also the number of the

constraints can be large if we want a solution close to the

original problem.

Figure 3 shows the relation of polyhedron defined by Ax ≤
b with different numbers of hyperplanes and the specified

spherical error tolerance region.

Fig. 3. The polyhedron determined by Ax ≤ b with different numbers of
hyperplanes. The inscribed sphere defines the ideal error tolerance region.

C. Sequential Quadratic Programming

Currently, sequential quadratic programming methods

(SQP) are considered to be the most efficient methods for

solving nonlinear programs of small to medium size, and a

wealth of these have been developed. We used the method of

Spellucci [15], which is available freely via www.netlib.org.

For solving the nonlinear constrained optimization problem,

we need to have a reasonable initial guess. If the initial guess

is ill-conditioned, it will either have a longer computation time

to solve the optimization problem, or worse the algorithm will

not converge to a reasonable solution. We can make progress

here by observing that for typical surgical cases the user input

will change at a much slower rate compared to the rate of

our control algorithm. This allows us to use the previous

incremental motion as the initial guess to compute the current

incremental motion. However, we need a strategy to provide a

reasonable initial guess for the very first step. A solution is to

use the solution of the linear approximation described earlier.

SQPs are iterative algorithms that solve the subproblem (6)

given [Δqk, sk]T as the guess for the optimal solution

[Δq�, s�]T and a symmetric positive semi-definite matrix

Bk. The descent direction dk which is the solution of the

subproblem, along with a step size determines the next es-

timate [Δqk+1, sk+1]T . The methods in the literature differ

in strategies to define the active set of equalities Ak and the

technique to define and update Bk. As a rule of thumb, SQPs

take about 5-50 iterations, with each iteration being a least

squares problem having n × m constraints in the worst case,

where n is the number of variables and m is the number of

nonlinear constraints.

∇C(x(q + Δqk), sk,xd)T d + 1
2dT Bkd

s.t. ∇AAk
(xi(q + Δqk), sk)T d ≤ bAk

,
(6)

Most SQP algorithms can determine the gradients using either

simple forward difference, symmetric difference or a higher

order approximation. The speed of the computation is greatly

enhanced if the gradient can be computed analytically because

it avoids evaluations of the constraints. Moreover the precision

and the numerical stability are compromised when using

numerical gradients due to discretization errors. Table II shows

the gradients for the five basic constraints.

TABLE II

THE GRADIENT OF THE CONSTRAINTS FOR THE FIVE TASK PRIMITIVES.

Task Primitives Gradient of constraints

Stay on a point δT
p Jp

Maintain a direction δT
r Jr

Move along a line (Hδp)T (HRT
p Jp)

Rotate around a line (Hδr)T (HRT
r Jr)

Stay above a plane dT Jp

We denote the Jacobian of the task frame as J =

[Jp; Jr] ∈ R6×N , N being number of joints; For our
experimental setup N=7. H is a diagonal matrix given
by diag(1, 1, 0).

IV. EXPERIMENTS

In the conventional laparoscopic approach the surgeons

often use the compliance provided by the tissue around the

entry port to reach areas otherwise hard to reach. For the

existing remote center of motion (RCM) robots such as

Intuitive daVinci, IBM LARS and JHU Steady Hand, the RCM

is a fixed point in space which is typically aligned at the

entry port and the remaining degrees of freedom are then used

to perform manipulations. In other words, the mechanism is

mechanically constrained at a point, and loses the ability to

take advantage of compliance. An analogous situation occurs

in the retinal vein cannulation procedure. The task there is to

guide a tool that passes through a port to follow a path along

the retinal vein until the desired target point for cannulation

is reached. The geometric relation is shown in Figure 4.

To demonstrate the concept of a “soft” customized virtual

fixture we select the above mentioned application, likely to

be encountered in many surgical situations. The concept here

is that the entry port be constrained within a region, and if the

tool is in that region, the surgeon experiences no resistance

(Refer figure 1). Outside this region, the surgeon experiences

some resistance which is related to the distance from the inner

region. Moreover no motion that moves the tool outside of the

outer region is permitted. A similar strategy is applied for the

tool tip. We compare the performance with both linear and

nonlinear constraints, and the performance with both hard and

soft constraints.

We use the “JHU Steady-Hand” - a 7-DoF robot which has

for 10μm position resolution our experiments. A 6-DoF force

234

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

C

Force
Sensor

Port

xpt

Ps

P c

l̂t

l̂c

{s}

{h}

{t}

Fig. 4. The Task to guide a tool that passes through a port to follow a path

sensor is integrated at the end-effector. An operator holds a

tool mounted at the end-effector. The robot responds to the

applied force, allowing the operator to have direct control

over the robot motion. We predefined a sinusoid curve in a

virtual environment, shown visually on the computer screen,

with 20mm amplitude and 15mm wavelength which serves

as a reference path. We define a position 30mm above the

center of the sinusoid (y = sin(x), x = 0) as the port.

We implemented virtual fixtures for this task by combining

task primitives on two different task frames: the tool tip frame
{t} and the tool shaft frame {s}.

The tool tip frame {t} refers to a coordinate frame whose

origin is at the tip of the tool and whose orientation is parallel

to the tool holder of the robot. We constrain the tip to move

along curve C. For each computational loop, the tool tip

position xpt and the tool orientation l̂t are obtained from the

robot encoders and its kinematics. We compute the closest

point P c on the sinusoid curve C to xpt. The tangent direction

l̂c of the sinusoid on P c serves as the reference direction.

The tool shaft frame {s} refers to a coordinate frame whose

orientation is parallel to the tool holder. For each time interval,

we calculate the point P s on the tool which is closest to the

port. We set the origin of frame {s} on P s. We also compute

the tool direction l̂t. We constrain the origin P s of frame {s}
to move along l̂t.

We combine these two task primitives together to generate

the virtual fixtures for the task. We require that our han-

dle motion be proportional to the user’s force input τ =[
F T

h 0T
]T

in the handle frame {h}. The origin of {h}
is defined at the position at which the user holds the handle,

and the x, y, z axes are aligned with the end-effector of the

robot.

V. RESULTS AND DISCUSSION

Our first test was a comparison of the computation time for

solving the least squares problem with linear constraints and

a nonlinear program. The results were obtained on a Pentium

IV 2GHz machine, with 512MB of memory and are shown in

Table III. The basic control loop as described in steps 1-4 in

section III-A has a periodicity of 30ms. The user performs the

task of moving from one end to another of the curve and the

time for computation of step 3 is recorded. Table III shows the

average time for computation over the samples taken for the

duration of complete experiment. The experiment is repeated

using a linear solver with different number of hyperplanes

as well as non-linear solver. For the linearly constrained

problem, the time for computation increases with the number

of hyperplanes used to represent the constraints. The nonlinear

solver takes about 9ms. Though it solves 5 to 50 iterations of

a quadratic program in (6), the number of constraints per

subprogram is usually small because an “active” set is used.

For this work we used the distance function as the constraint,

which can also be readily approximated by a convex polyhedra

to give a linearly constrained problem. This might not be the

case for general constraints, in which case the nonlinear solver

might be the only solution.

TABLE III

TIME FOR COMPUTATION

Hyperplanes 4 8 16 32 Nonlinear
Time(ms) 2.2680 4.1225 7.2842 14.3549 9.4017

Figure 5 shows the result of simulations using a planar 6

link manipulator as a test case. Since the linear approximation

circumscribes the actual constraints, this leads to larger motion

of the joints.

−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

X (mm)

Y

(
m
m
)

Desired trajectory

Joint #3 is
constrained

Using Linear
Approximation

Using Nonlinear

NonLinear
Linear Approximation

(a)

0.0175 0.018 0.0185 0.019 0.0195
5.5

6

6.5

7

7.5
x 10

−3

X (mm)

Y

(
m
m
)

Using Linear
Approximation

Using Nonlinear

Joint #3 is
constrained

(b)

Fig. 5. (a) A example trajectory of a planar 6 link robot with joint #3
constrained to a point. (b) Close-up of joint #3 showing difference between
linear approximation and nonlinear constraints

Figure 6 shows the part of the objective function given by

||(Δx − Δxd)||22. This objective represents how closely the

handle moves with respect to the force applied by the user.

A larger value creates a perception of resistance to the user.

A gradually increasing force in the direction normal to the

nominal path was applied. The deviations from the path are

shown in Figure 7. As seen in these figures, the objective

function for the “soft” constraint does not increase much until

a threshold of error is reached, meaning that the robot handle

follows the user command. In the case of “hard” constraints,

this value increases with the slightest error in position.

Figure 8 shows the plots of positions of the tip and the

entry port for both the “soft” as well as “hard” constraints.

The trajectories of the tool tip, the user handle and the point

on the tool closest to the entry point are shown.

235

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

Farshid
Highlight

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Force (N)

|
|

Δ
x

−

Δ
x
d

|
|

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|
|

Δ
x

−

Δ
x
d

|
|

Force (N)

(b)

Fig. 6. The value of objective with respect to force applied normal to
constraint (a) “soft”, where ws,i = 1 × 10−3 (b) “hard”, where ws,i =
1 × 10+3

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Force (N)

E
r
r
o
r

(
m
m
)

(a)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

E
r
r
o
r

(
m
m
)

Force (N)

(b)

Fig. 7. The value of error with respect to force applied normal to constraint
(a) “soft”, where ws,i = 1 × 10−3 (b) “hard”, where ws,i = 1 × 10+3

VI. CONCLUSION

We presented a weighted constrained optimization frame-

work to formalize a library of “virtual fixtures” for surgical

robot assistants. The virtual fixtures can be customized for a

particular surgical task by combining one or more objectives

and constraints assigned to single or multiple task frames. We

implement the constrained optimization problem with both

linear and nonlinear constraints, and discuss the trade-offs

between linear approximations and nonlinear constraints.

The constraints for the task primitives are often nonlinear;

nevertheless we can use linear expressions to approximate the

constraints. Solving linearly constrained least squares prob-

lems can take less computation time. However, when linear

constraints are used to approximate nonlinear constraints, more

linear constraints are required for a tighter approximation. The

higher the number of constraints used for approximation, the

larger the computation time required to solve the problem.

There is a trade off between accuracy and speed between

linear and nonlinear constraints. One can choose to use a linear

approximation with fewer number of hyperplanes if accuracy

is not a concern, whereas nonlinear gives better accuracy.

We also introduced a “soft” virtual fixture mechanism for

robotic surgical assistance. The “soft” virtual fixtures enable

a surgical tool to have some freedom inside safety regions.

This mechanism gives surgeons control over some degree of

uncertainty that arises from factors such as registration errors,

variations in anatomy and changes during procedures, allowing

them to move the tool away from the computed path.

In the future, we wish to explore the possibility of using

other nonlinear constraints and to apply this technique to other

−100

−50

0

50

100

−50

0

50

100

150
−100

−50

0

50

100

150

X (mm)
Y (mm)

Z

(
m
m
)

Handle

Fixed Point

Desired Path

(a)

−100

−50

0

50

100

−50

0

50

100

150
−100

−50

0

50

100

150

X (mm)
Y (mm)

Z

(
m
m
)

Handle

Fixed Point

Desired Path

(b)

Fig. 8. Trajectories of points on robot (a) “soft”, where ws,i = 1 × 10−3

(b) “hard”, where ws,i = 1 × 10+3

robots having higher redundancy and dexterity and to use a

piecewise linear or nonlinear objective for the slack variables.

ACKNOWLEDGMENT

Partial funding of this research was provided by the National

Science Foundation under grants EEC9731748 (CISST ERC),

IIS0205318, and JHU internal funds.

REFERENCES

[1] L. B. Rosenberg, “Virtual fixtures: Perceptual tools for telerobotic
manipulation,” in IEEE Virtual Reality Annual International Symposium,
Seattle, USA, 1993, pp. 76–82.

[2] B. L. Davies, S. J. Harris, W. J. Lin, R. D. Hibberd, R. Middleton, and
J. C. Cobb, “Active compliance in robotic surgery - the use of force
control as a dynamic constraint,” Proc. Inst. Mech. Eng. H, vol. 211,
no. 4, pp. 285–292, 1997.

[3] S. Park, R. D. Howe, and D. F. Torchiana, “Virtual fixtures for robotic
cardiac surgery,” Proc. Intl. Conf. MICCAI, pp. 1419–1420, 2001.

[4] A. Bettini, P. Marayong, S. Lang, A. M. Okamura, and G. D. Hager,
“Vision assisted control for manipulation using virtual fixtures,” IEEE
Transactions on Robotics, vol. 20, no. 6, pp. 953–966, 2004.

[5] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulator,” Intl. J. Robot. Res., vol. 6,
no. 2, pp. 3–15, 1987.

[6] C. Klein and B. E. Blaho, “Dexterity measures for the design and control
of kinematically redundant manipulators,” Intl. J. Robot. Res., vol. 2,
no. 6, pp. 72–83, 1987.

[7] J. M. Hollerbach and K. C. Suh, “Redundancy resolution of manipulators
through torque optimization,” IEEE Trans. Robot. Automat., vol. 3, no. 4,
pp. 308–316, 1987.

[8] R. J. Spiteri, D. K. Pai, and U. M. Ascher, “Programming and control
of robots by means of differential algebraic inequalities,” Intl. J. Robot.
Res., vol. 16, no. 2, pp. 135–145, 2000.

[9] J. Funda, R. H. Taylor, B. Eldridge, S. Gomory, and K. G. Gruben,
“Constrained cartesian motion control for teleoperated surgical robots,”
IEEE Trans. Robot. Automat., vol. 12, no. 3, pp. 453–465, 1996.

[10] R. H. Taylor, J. Funda, B. Eldridge, K. Gruben, D. LaRose, S. Gomory,
M. Talamini, L. R. Kavoussi, and J. Anderson, “A telerobotic assistant
for laparoscopic surgery,” IEEE Eng. Med. Biol. Mag., vol. 14, pp. 279–
287, 1995.

[11] R. H. Taylor, P. Jensen, L. L. Whitcomb, A. Barnes, R. Kumar,
D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “A
steady-hand robotic system for microsurgical augmentation,” Intl. J.
Robot. Res., vol. 18, no. 12, pp. 1201–1210, 1999.

[12] G. Guthart and K. Salisbury, “The intuitive TM telesurgery system:
Overview and application,” in IEEE International Conference on Ro-
botics and Automation, San Francisco, USA, 2000, pp. 618–621.

[13] M. Cavasoglu, F. Tendick, M. Cohn, and S. Sastry, “A laparoscopic
telesurgical workstation,” IEEE Transactions on Robotics and Automa-
tion, vol. 15, no. 4, pp. 728–739, 1999.

[14] C. Lawson and R. Hanson, “Solving least squares problems,” Englewood
Cliffs, NJ: Prentice-Hall, 1974.

[15] P. Spellucci, “An SQP method for general nonlinear programs using only
equality constrained subproblems,” Math. Prog., vol. 82, pp. 413–448,
1998.

236

Farshid
Highlight

