

Seminar Presentation Position Control of BIGSS Lab Snake for Revision Total Hip Arthroplasty (THA) Surgery

Project 6: Farshid Alambeigi

Mentors: Dr. Mehran Armand, Ryan Murphy, Dr. Russell Taylor

Overview of Goals

- > The BIGSS lab is developing a minimally-invasive surgical workstation to treat the osteolytic lesions using using a snake like dexterous manipulator (SDM).
- > The SDM will be positioned in the workspace by a robotic arm.

> The focus of this project is integrating the SDM with the robotic arm- which is a 6 DOF Universal Robot (UR5) - and position control of the tip of the SDM inside the lesion area.

Overview

OHNS HOPKINS

WHITING SCHOOL

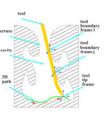
of ENGINEERING

I briefly describe three main papers I used in my work and explain its correspondence to my project:

- 1. A. Kapoor, Mi Li and R. H. Taylor, "Constrained Control for Surgical Assistant Robots", Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida - May 2006
- 2. A. Kapoor, N. Simaan, R. H. Taylor, "Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot", Proceedings of the 12th International Conference on Advanced Robotics, 2005
- 3. R. J. Murphy, Y. Otake, R. H. Taylor, and M. Armand, "Predicting Kinematic Configuration from String Length for a Snake-like Manipulator Not Exhibiting Constant Curvature Bending", submitted in Intelligent Robots and Systems (IROS), 2014.

CUS

ABORATORY FOR


sing + Robotics

Computational

Paper I: A. Kapoor, et al. "Constrained Control for Surgical Assistant Robots"

> Motivation

Restriction on the robot motions in surgical tasks such as: ✓ prevent the tooltip from entering some undesired region \checkmark confine the tool shaft to pass through some fixed point in space such as (incision point etc.).

- Considered goal for the robot is:
 - \checkmark To obey the constraints
 - \checkmark To follow the motions of the surgeon or master robot at the same time

> Abstract

- This problem has been defined as a constrained optimization problem.
- A library of "virtual fixtures" has been defined for different constraints of surgical robots.
- Linearizing nonlinear constraints has been investigated.
- The concept of "soft" virtual fixture has been defined.

Ming Li, Masaru Ishii, and Russell H. Taylor, "Spatial Motion Constraints Using Virtual Fixtures Generated by Anatomy"

Paper I: A. Kapoor, et al." Constrained Control for Surgical Assistant Robots"

≻ <u>Method:</u>

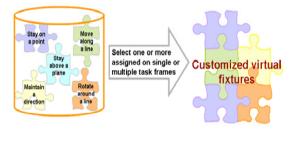
*This paper divides optimization algorithm to these steps:

1) Actual Position = <u>forward kinematics</u>(θ_{old}) 2) $\Delta_{pos} = Actual Position - Desired Position$ $3) <math>V = J \cdot \dot{\theta} \rightarrow \frac{\Delta x}{\Delta t} = J \cdot \frac{\Delta \theta}{\Delta t} \rightarrow \Delta x = J \cdot \Delta \theta$ 4) $\Delta \theta = \arg \min_{\Delta \theta} (\left\| \underline{J} \cdot \Delta \theta - \Delta_{pos} \right\|_{2}^{2} + \left\| w \cdot \Delta \theta \right\|_{2}^{2})$ $A \cdot \Delta x \le b$ 5) $\theta_{New} = \theta_{old} + \Delta \theta$

Paper I: A. Kapoor, et al."Constrained Control for Surgical Assistant Robots"

> <u>Method (cont.)</u>: Virtual Fixture Library

IOHNS HOPKINS

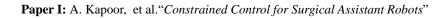

WHITING SCHOOL

of ENGINEERING

✤ For determining matrix A and b this paper defines a virtual fixture library for 5 basic geometric constraints

♦ Using the proposed library each customized virtual fixtures can be created.

BIGSS



CIIS

ABORATORY FOR

nsing + Robotics

Computational

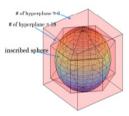
<u>Method (cont.)</u>:

Some points regarding this method:

> This optimization problem tries to minimize the two-norm of **error between desired** and actual incremental motions(first term) with minimum joint motions (second term)

- \succ For solving this problem we need:
 - ✓ Forward Kinematics of robot
 - ✓ Jacobian matrix of robot
 - \checkmark To Find the <u>A and b</u> Matrices which are defining our constraints

> We can linearize this nonlinear optimization problem

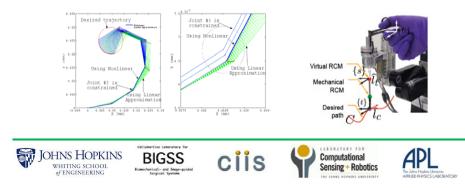


Paper I: A. Kapoor, et al." Constrained Control for Surgical Assistant Robots"

> Method (cont.): Linearizing constraints

- The constraints for the task primitives are often nonlinear however:
 Solving linearly constrained least squares problems can take less computation time
 computation of this problem is efficient and robust.
- Therefore This paper uses a polyhedron to approximate a geometric constraint region like spherical error tolerance.

As the number of the hyperplanes increases, the volume of the polyhedron reduces and the polyhedron approaches the inscribed sphere.

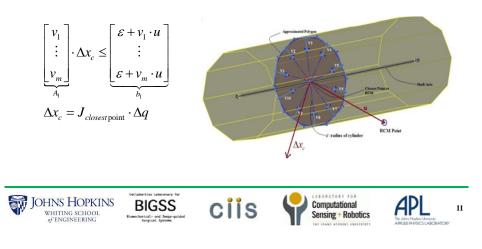

Paper I: A. Kapoor, et al. "Constrained Control for Surgical Assistant Robots"

> Simulation and results:

✓ Some experiments have been done to investigate the effect of linearization based on defined optimization problem.

 \checkmark Results show that there is a trade-off between accuracy and speed between linear and nonlinear constraints.

✓ Using a linear approximation with fewer numbers of hyperplanes reduces accuracy while has better speed.



Paper I: A. Kapoor, et al."Constrained Control for Surgical Assistant Robots"

Application in my project:

>Defining the problem as a described multi-objective optimization

>Defining RCM constraint using Virtual fixture library:

Paper I: A. Kapoor, et al. "Constrained Control for Surgical Assistant Robots"

> Paper Analysis

*Pros:

✓ Introducing a useful approach for defining complicated control task as a multiobjective optimization problem

✓ Introducing a useful library for virtual fixtures

*Cons:

✓ not having pictures for defined geometric constraints

✓ The simulated problem has not formulated as the described method (constraints and objective functions)

Computational Sensing + Robotics

Paper II: A. Kapoor, et al."Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot"

> Abstract and Motivation:

JOHNS HOPKINS

WHITING SCHOOL

of ENGINEERING


This paper presents the kinematic modeling and high level control of a hybrid 8 DoF robots used for suturing in the throat and upper airways.

♦ For this work, they have attached a snake-like unit (SLU) to a modified version of the LARS

They have used linearized multi-objective constrained optimization method that described in paper 1, therefore they need:

✓ Forward kinematics and Jacobian matrix of coupled robots ✓ Defining suturing task as matrix A and b.

BIGSS

ciis

Paper II: A. Kapoor, et al. "Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot"

Kinematic Model

 \clubsuit The have used these kinematic relations for determining Jacobian matrix:

$$\begin{split} \dot{x}^{W}_{slubase} &= J_{Lars} \cdot \dot{q}_{Lars} \\ V^{w}_{SLU} &= V^{w}_{SLUbase} + R^{w}_{SLU} V^{SLUbase}_{SLUbip} + \omega^{w}_{SLUbase} \times R^{w}_{SLUbase} \cdot p^{SLUbase}_{SLUbip} \\ \omega^{w}_{SLUtip} &= \omega^{w}_{SLUbase} + R^{w}_{SLU} \cdot \omega^{SLUbase}_{SLUtip} \end{split}$$

♦ The kinematics of hybrid system consisting of the 6-DoF LARS and 2-DoF SLU can be described using 8 independent variables.

$$\begin{split} \boldsymbol{J}_{combined} &= \begin{bmatrix} \boldsymbol{J}_{Lars} & \boldsymbol{J}_{SLU} \end{bmatrix}; \boldsymbol{J}_{Lars} \in \mathbb{R}^{6 \times 6}, \boldsymbol{J}_{Snake} \in \mathbb{R}^{6 \times 2} \\ \dot{\boldsymbol{x}}_{SLU}^{W} &= \boldsymbol{J}_{combined} \cdot \dot{\boldsymbol{s}}; \ \boldsymbol{J}_{combined} \in \mathbb{R}^{6 \times 8}, \dot{\boldsymbol{s}} \in \mathbb{R}^{8 \times 1} \end{split}$$


Paper II: A. Kapoor, et al. "Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot"

> <u>Defining Constraints and Objective Functions (cont.):</u>

3. Avoiding joint limits: To ensure that the motion is within the given workspace of the system with minimum extraneous motion of the system:

$$\arg\min_{s} (\|W_{s} \cdot \dot{s}\|_{2}$$

s.t. $H_{s} \cdot \dot{s} \ge h_{s}; H_{s} = (\mathbf{I}, -\mathbf{I})^{t} \in \mathbb{R}^{16 \times 8}$
and $h_{s} = (s_{t} / \Delta \mathbf{t}, s_{tt} / \Delta \mathbf{t})^{t} \in \mathbb{R}$

4. Combining objective functions and constraints:

Paper II: A. Kapoor, et al. "Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot"

> Defining Constraints and Objective Functions:

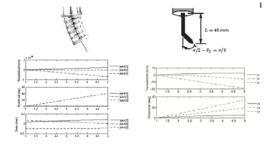
1. Minimizing tissue tear: They rotate the gripper such that its angular velocity vector is perpendicular to the suture plane and the center point of the suture is constrained to lie within a small sphere of radius ε_s :

$$\begin{aligned} \arg\min_{\dot{x}} \left(\left\| W_g(\dot{x}_g^w - \dot{x}_{gdesired}^w) \right\|_2 \\ s.t. \ \left\| p_g^w - p_{gstart}^w \right\| \le \varepsilon_g \text{ and } \dot{x}_{gdesired}^w = (0, 0, 0, 0, 0, \omega_d)^d \end{aligned}$$

2. Avoiding joint speed limits: considering limits on the joint velocities of SLU

 $\begin{aligned} &\arg\min_{\dot{x}}(\left\|W_{g}(\dot{x}_{g}^{w}-\dot{x}_{gdesired}^{w})\right\|_{2} \\ &s.t. \quad H_{i}\cdot\dot{q}_{SLU}\geq h_{i}; H_{i}=(\mathbf{I},-\mathbf{I})^{t}\in\mathbb{R}^{6\times 3} \\ &and \quad h_{i}=(\dot{q}_{SLU\,lo},-\dot{q}_{SLU\,up})^{t}\in\mathbb{R}^{6} \end{aligned}$

Fig: A. Kapour. et al., "Spatial Motion Constraints for Robot Assisted Suturing using Virtual Fixtures"


Paper II: A. Kapoor, et al. "Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot"

Simulation and Experimental Results:

 \checkmark Simulation has been done to compare suturing using the SLU verses a rigid tool to hold the suture.

 \checkmark Results indicate the importance of maintaining tool tip dexterity to avoid large motions in the proximal end of the tools.

 \checkmark These simulations have been validated by experiments based on encoder readings and the forward kinematic model of the hybrid robot

Paper II: A. Kapoor, et al. "Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot"

Paper Analysis

*Pros:

 \checkmark Introducing a useful approach for coupling a snake-like robot to a robotic arm

 \checkmark Defining a complicated task such as suturing with some simple geometric constraints problem

*Cons:

✓ Again, not having pictures for defined geometric constraints

> <u>Application in my project:</u>

✓ Using the same procedure for coupling our snake to UR5 robot

Paper III: Ryan J. Murphy, et al. "Predicting Kinematic Configuration from String Length for a Snake-like Manipulator Not Exhibiting Constant Curvature Bending"

EXPERIMENTAL SETUP:

Paper has performed a series of experiments with these considerations:

- ✓ Bending the manipulator freely without obstruction in air
- ✓ Each test limited the tension measured by the load cells to 22.2N
- \checkmark Calibration procedure for defining the zero cable position prior to each test.
- \checkmark Using an acrylic stand with a camera above the manipulator to capture the manipulator

 \checkmark Using automated, piecewise-rigid 2D/3D registration technique to define the kinematic configuration of the manipulator from each static image

Paper III: Ryan J. Murphy, et al. "Predicting Kinematic Configuration from String Length for a Snake-like Manipulator Not Exhibiting Constant Curvature Bending"

><u>Abstract and motivation</u>

 \checkmark This paper uses BIGSS lab snake and tries to find its kinematics model using a series of experiments.

 \checkmark General models of continuum robots like piecewise constant curvature model do not work for it.

 \checkmark They use a two-step kinematic model to in the **first step** predict the tip position from string length and then in **second step** pin the manipulator tip at the predicted position and run an energy minimization to estimate the kinematic configuration.

OOL BIGSS

 $p_x = f_1(l) = B_n(l)$

 $p_z = f_2(p_x) = \sum_{i=1}^{3} a_i \sin(b_i \cdot p_x + c_i)$

 $p_{eef} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} f_1(l) \\ 0 \\ f_2(f_1(l)) \end{pmatrix}$

 $p_{y} = 0$

APL The Julius Huselins Linesety

Paper III: Ryan J. Murphy et al. "*Predicting Kinematic Configuration from String Length for a Snake-like Manipulator Not Exhibiting Constant Curvature Bending*"

> Kinematic Prediction:

WHITING SCHOOL

of ENGINEERING

<u>First Step : (Predicting end-effector position)</u>

✓ **x position:** a nonlinear least-squares optimization fits a combination of <u>Bernstein basis polynomials</u> to the data.

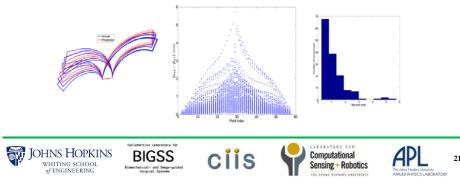

 $\checkmark z$ position: a nonlinear least-squares optimization fits some of 3 sinusoids to the data.

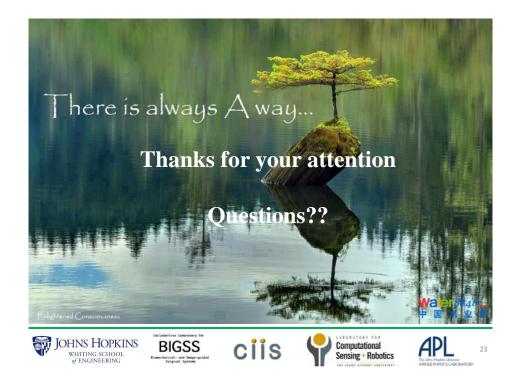
<u>Second Step</u>:(Finding snake configuration)

✓ Pins the manipulator tip at the <u>calculated tip position</u> and runs an <u>energy minimization</u> to estimate the kinematic configuration. p_{30} p_{29}

✓ Each pin joint has been modeled as a torsional spring

 \checkmark Assuming least-energy state for a specific tip position they this optimization problem have been solved :


OHNS HOPKINS BIGSS


Paper III: Ryan J. Murphy et al. "*Predicting Kinematic Configuration from String Length for a Snake-like Manipulator Not Exhibiting Constant Curvature Bending*"

> Simulation and results:

 \checkmark The magnitude error between the predicted position and configuration were compared to the ground truth derived from the overhead images.

- \checkmark Over 68% of the predictions resulted in a maximum error less than 1.25mm .
- \checkmark The largest errors occurred at the tip of the manipulator in high-bend configurations where the tip prediction performs poorly.

Paper III: Ryan J. Murphy et al. "Predicting Kinematic Configuration from String Length for a Snake-like Manipulator Not Exhibiting Constant Curvature Bending"

> Paper Analysis

*Pros:

 \checkmark Introducing a useful experimental approach for determining kinematics of non-constant curvature continuum robots

*Cons:

 \checkmark Do not showing the relation between tip position and cable length from the real data and predicted one in a graph.

> <u>Application in my project:</u>

✓Using the kinematic model for predicting tip position ✓Using configuration prediction for demonstration

APL