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Abstract— We present our work on developing and testing the
high-level control for a future tele-robotic system for minimally
invasive surgery of the throat and upper airways. As a test-
bed for these experiments, we used a hybrid 8 Degrees-of-
Freedom (DoF) experimental robot composed of a six DoF robot
and a two DoF snake-like unit. The kinematics and weighted
redundancy resolution to support suturing in confined spaces,
such as the throat, is developed and experimental validation in
presented. The kinematics of the hybrid system is described in
an 8-dimensional augmented vector space composed from the
joint variables of the six DoF robot and two angles describing
the configuration of the snake-like unit. Then a weighted, multi
objective, optimization framework is used to perform the suturing
operation under the assumption of a predefined suture geometry
while satisfying joint limits, torque constraints, and minimizing
extraneous motions of the system joints.

I. INTRODUCTION

Snake-like robots have been used extensively for various
applications such as pipe inspection [1]–[3], search and res-
cue [4], [5], etc. In the last decade, these robots have been
tested also for medical applications. While the majority of
works focused on developing endoscopes and active bending
catheters [6]–[11] there is a growing number of works target-
ing surgical assistance, including distal dexterity enhancement
for Minimally Invasive Surgery (MIS). Our group is currently
focusing on developing a tele-robotic system for MIS of the
larynx and upper airways [12], [13].

The SLU is composed from an array of spacer disks affixed
along a central super-elastic tube called the primary backbone.
Three other super-elastic NiTi tubes are equally displaced
around the central backbone and are called secondary back-
bones. These backbones are rigidly attached only to the end
disk of the SLU. By using both push and pull forces on
these backbones, the SLU can bend in any direction and the
load distribution on the backbones can be optimized. This is
achieved through a separate actuation redundancy algorithm
as presented in [12]. The similarities and differences between
this unit and previous works using flexible backbones and wire
actuation were described in [12], [14].

Previous works on redundancy resolution used pseudo-
inverse control to provide dexterity optimization [15], [16],
torque minimization [17], and singularity avoidance [16].
Other works used variational calculus for path planning [18]
and control of hyper redundant robots [19], and singular-
ity avoidance for parallel robots [20]. While these methods
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Fig. 1. The Distal Dexterity Unit (DDU) composed from a multi-backbone
snake-like unit (SLU) equipped with a parallel tip
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Fig. 2. Pictures of (a) 4 mm and (b) 27.6 mm snake-like units (SLU’s) in
a bent configuration

present two extremes of local and global optimization ap-
proaches, we focus our work on an optimization framework
that is fast enough for online control and is easily modified
to include obstacle avoidance, and virtual fixtures. We rely
heavily on the work of Funda et al. [21] and Li and Taylor [22]
in developing our control.

Fig. 2(a) presents the 4mm SLU used to develop the DDU
for the tele-robotic system for MIS of the throat. For this work,
we attached a large-scale model (Fig. 2(b)) of the SLU to a
modified version of the LARS - a 6-DoF robot developed at
IBM [23], [24]. This robot is composed from a 3 DoF X-Y-Z
stage that is serially attached to a “Remote Center of Motion”
(RCM) mechanism. This mechanism is designed to rotate the
tool tip around a fixed point in space. This is a highly desirable
feature for MIS where the tool is limited to a fixed fulcrum
point in the patient body. The axis of rotation of the third

4520-7803-9177-2/05/$20.00/©2005 IEEE

Farshid
Highlight



rotary joint passes through this remote point. Fig. 3 presents
the LARS robot and the kinematic nomenclature used for its
position analysis.

The following section outlines the kinematics of the SLU
and the hybrid system composed from the LARS and the SLU
of Fig. 4. Section III presents our approach for high-level
control to support suturing in confined spaces. Section IV
describes our validation setup and presents results of our
experiments. Finally, section V summarizes the results of our
experiments followed by conclusions.
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Fig. 3. The LARS robot and its kinematics
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Fig. 4. The snake-like unit (SLU) and kinematic nomenclature

II. KINEMATIC MODEL

Fig. 3 and 4 show the nomenclature of LARS and SLU
respectively. In this paper we assume that the SLU is attached
to the LARS such that the origin of the base disk lies along this
axis. We define the following coordinate frames to facilitate

further discussion of the kinematics of the system: The gripper
frame {g}, end disk frame {e}, snake plane frame {s}, base
disk frame {b} and the world frame {w}. Without loss of
generality, we can assign the frames such that the world frame
coincides with the base disk frame when all the joints are at
a predefined home position.

The following notation is used in this paper:
{a} - A right handed coordinate frame named a.
[R|p] - A homogeneous 4 × 4 transformation with

rotation matrix R and a translational com-
ponent p.

bTa - A homogeneous 4 × 4 transformation from
frame {a} to frame {b}.

R (a, α) - A rotation matrix about axis a by an angle
α.

(a)∧ - A Cross product matrix, such that (a)∧ b =
a× b.

pc
ab - A vector from a to b with respect to frame

{c}.
vc

ab - Relative linear velocity of frame {b} with
respect to frame {a} described in frame {c}.

ωωωc
ab - Relative angular velocity of frame {b} with

respect to frame {a} described in frame {c}.
x̂a, ŷa, ẑa - Unit vectors associated with coordinate

frame {a}.
d1, d2, d3 - The joint variable for translational joint of

LARS.
θ4, θ5, θ6 - The joint variable for rotational joint of

LARS.
L - Length of SLU primary backbone.
r - Radius of base, space and end disks.
θ(s) - The angle of primary backbone tangent in x̂1

ẑ1 plane. θ0 = θ(s = 0) and θL = θ(s = L).
δ - The rotation angle of snake plane about ẑb.
β - Division angle. β = 2π/k. k is the number

of secondary backbone.
i - Index of the secondary backbone of SLU,

i = 1, 2, 3.
Li - Length of ith backbone.

The direct kinematics for the LARS robot is as follows
wTb = [I|d1x̂w] [I|d2ŷw] [I|d3ẑw]

× [R (ŷw, θ4 ) |0] [R (x̂w, θ5 ) |0]
× [

I|poffset

]
[R (x̂w, π) |0] [R (ẑw, θ6 ) |0]

(1)

The generalized twist1 of the frame {b}, ẋw
b is related to

the joint velocities q̇lars ∈ R
6 of the LARS robot according

to (2)

ẋw
b =Jlars q̇lars =

[
Jv lars

Jω lars

]
q̇lars (2)

where Jlars ∈ R
6×6 is the instantaneous direct kinematics

Jacobian of the LARS robot.

1Twist is redefined in this paper such that the linear velocity component
precedes the angular velocity component.
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The direct kinematics and the instantaneous kinematics of
the SLU were presented in [12]. The same notation is used in
this paper and part of it is presented here for completeness. As
in [12], the pose of the SLU is represented by two angles θL
and δ. The joint variables for the SLU, that is the secondary
backbone lengths depend on the angles θL and δ and are given
by the inverse kinematic solution

Li = L+ r(θL − θ0) cos(δ) (3)

The position, pb
gb , and the orientation, bRg , of the end disk

are obtained by integrating along the tangent of the backbone
and by successive rotation sequence as in (4).

pb
gb = R (ẑb,−δ)ps

gb

bRg = R (ẑb,−δ)R (ŷs, π/2 − θL)R (ẑe, δ)
(4)

where

ps
gb =

[∫ L
0

cos(θ(s))ds, 0,
∫ L
0

sin(θ(s))ds
]t

(5)

For small SLU where gravity effects are negligible, θ(s)
will be a circular section of length L and radius ρ [25]. Thus
θ(s) can be approximated by a linear function given by

θ(s) = π/2 + as; where, a = (θL − π/2) /L (6)

and (5) becomes

ps
gb =

{ [
ρ(sin(θL) − 1), 0, ρ cos(θL)

]t
, θ �= π/2[

0, 0, L
]t
, θ = π/2

(7)

By defining ψ̇̇ψ̇ψ �
(
θ̇L, δ̇

)t
, and differentiating (4) with

respect to time, one obtains the linear and angular velocity of
frame {g} with respect to frame {b} as

vb
g = R (ẑb, δ)

[
ṗs

gbx
, ps

gbx
δ̇, ṗs

gbz

]t

ωωωb
g = −δ̇ẑs − θ̇Lŷs + δ̇ẑe

(8)

Equations (8) can be rearranged to give kinematic Jacobian
relating the generalized twist ẋb

g with the angular rates ψ̇̇ψ̇ψ .

ẋb
g =Jslu ψ̇̇ψ̇ψ =

[
Jv slu

Jω slu

]
ψ̇̇ψ̇ψ ; Jslu ∈ R

6×2 (9)

A frame transformation can be applied to the position and
orientation of gripper frame {g} to get direct and instantaneous
kinematics in the world frame {w}. The final results are
presented in (10) and (11).

wTg = wTb

[
bRg |pb

gb

]
(10)

vw
g = vw

b + wRbv
b
gb + (ωωωw

b )∧ (wRbp
b
gb)

ωωωw
g = ωωωw

b + wRbωωω
b
gb

(11)

The kinematics of hybrid system consisting of the 6-DoF
LARS and 2-DoF SLU can be described using 8 independent
variables. For convenience we define an augmented state
vector s ∈ R

8 as composed of the joint variable of LARS

and two angles describing the configuration of the SLU, that
is, s �

[
qlars

t, ψψψt
]t

. Such a selection of variables allows
us to use (2), (8), and xw

b =
[
vw

b
t, ωωωw

b
t
]t

in (11) to give a
linear equation (12) in ṡ.

ẋw
g =Jxs ṡ =

[
Jv

Jω

]
ṡ; Jxs ∈ R

6×8 (12)

The joint velocities of the SLU are related to the angular rates
ψ̇̇ψ̇ψ according to (13).

q̇slu =Jl ψ ψ̇̇ψ̇ψ ; Jl ψ ∈ R
3×2 (13)

Jl ψ is found by taking the time derivative of (3) for Li =
1, 2, 3.

III. PATH PLANNING AND REDUNDANCY RESOLUTION
FOR SUTURING IN CONFINED SPACES

A. Suture Model

Using the kinematic nomenclature of previous section, we
can explore different approaches for suturing in confined
spaces. Fig. 5 shows a typical suture used during surgery. It is
a circular section of known length and radius. For this paper,
we assume that the suture is attached to the SLU such that the
plane of the suture is parallel to the end disk and the center
of the suture lies along the ẑg axis of the end disk of the
SLU. We also assume that the suture geometry is planar and
known in advance; particularly we assume it to be circular. To
minimize tissue tearing we propose to control the movement
of the LARS and SLU such that the relative velocity of the
needle with respect to the tissue is tangent to the needle at the
point at which it pierces the tissue. For a circular suture this
simplifies to performing a rotational motion about the center
of the suture.

Fig. 5. A typical 13 mm, 3/8 circle suture used in surgeries

B. Redundancy Resolution for Suturing

In this section, we discuss the implementation of our method
for the task of suturing within a confined space. We assume
that the target is specified and the robot is positioned such
that the axis and center of the suture are aligned with the
desired point and axis. We will use the augmented state vector
sstart to represent the state of the robot at the beginning of the
suture-biting-motion. The pose of frame {g} with respect to
world frame {w} at this instance is represented by known
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position and orientation pw
g start

and wRg start. We would like to
perform path generation for suturing while minimizing tissue
tear, avoiding maximal joint speeds, and avoiding joint limits.
Moreover it is desirable to perform this task with minimum
motion of the LARS and SLU joints, as this would allow mul-
tiple such units to operate while reducing the computational
effort for collision avoidance amongst several tools inside the
same confined space such as the throat. We chose to linearize
our system by assuming the current position and planning
for the next target position after a small time increment
∆T . Hence we approximate velocities as ṡ = ∆s/∆T and
ẋ = ∆x/∆T . The outline of the algorithm is as follows: 1)
Obtain the incremental motion desired by the user through
force sensor, joystick or master 2) Formulate a set of linear
constraints based on current robot state and specified task 3)
Use the robot and task instantaneous kinematics to generate
a quadratic program with linear constraints. The general form
of the program is

arg min
∆s/∆T

‖W (∆x − ∆xdesired)/∆T‖, (14a)

s.t. H∆x/∆T ≥ h, (14b)
∆x/∆T =Jxs∆s/∆T (14c)

where ∆s is the desired incremental motions of the augmented
state variables, ∆xdesired, ∆x are the desired and the computed
incremental motions of the task variables in Cartesian space,
respectively. Jx s is the Jacobian matrix relating Cartesian
space to augmented state vector space, W is a diagonal matrix
for weights. Equation (14b) forms a convex polyhedron which
represents the feasible region for Cartesian velocities. Equation
(14c) represents the kinematic constraints of the robot. 4)
Solve the quadratic program for the incremental motion, which
is used to move the robot. We would like to note that the
constraints of step 3 might not be linear such as the distance
function. In such cases we use a linear approximation, which
allows us to utilize the structure of least squares problem with
linear constraints, and solve the quadratic program in time
frames suitable for robot control. We have used the Lawson
and Hanson’s algorithm as presented in [26].

1) Minimizing tissue tear: To ensure pure rotation about
the center of the suture, we rotate the gripper such that its
angular velocity vector is perpendicular to the suture plane
and the center point of the suture is constrained to lie within a
small sphere of radius εg . This translates into the constrained
optimization problem given by (15).

arg min
ẋ

∥∥Wg

(
ẋw

g − ẋw
g desired

)∥∥ (15a)

s. t.
∥∥pw

g − pw
g start

∥∥ ≤ εg (15b)

where ẋw
g desired

=
(
0, 0, 0, 0, 0, ωd

)t
, and ωd is

the desired angular speed about the center of suture. Here
Wg ∈ R

6×6 is a diagonal matrix of weights. We would like to
reformulate (15) so that it is compatible with (14) this can be
achieved by replacing the non-linear Euclidean norm in (15b)
by a linear approximation. We obtain such an approximation

by bounding all possible projections of pw
g start

on all the radial
unit vectors inside the unit sphere to be smaller than εg . We
then discritize the bundle of radial unit vectors as represented
in the rows of the matrix M, given by (16).

M =

⎡

⎢⎢⎣

...
cos(ηi) sin(ξj), sin(ηi) sin(ξj), cos(ξj)

...

⎤

⎥⎥⎦ ,

i = 1, . . . , n; j = 1, . . . ,m

(16)

where ηi = i(2π/n) and ξj = j(2π/n) represent the direction
angles with respect to x̂w and ẑw, respectively.

If we consider a sufficient number of unit vectors in M

in different directions with pw
g start

as origin, (15b) can be
approximated by a set of n ×m linear inequalities given by
(17).

M
(
pw

g − pw
g start

) ≤ εge (17)

where e =
(
1, · · · , 1)t ∈ R

nm. Since pw
g and pw

g start
are

separated by a small time increment ∆T , we approximate the
velocity ṗw

g by (pw
g −pw

g start
)/∆T . By using this approxima-

tion and (17), (15) can be written in the framework of (14)
as:

arg min
ṡ

∥∥Wg

(
ẋw

g − ẋw
g desired

)∥∥ (18a)

s. t. Hg ṗ
w
g ≥ hg (18b)

ẋw
g =Jxs ṡ (18c)

where Hg = −M and hg = −(εg/∆T )e. Physically (18b)
represents a polyhedron with nm vertices which we have used
to approximate (15b).

2) Avoiding joint speed limits: To keep the actuation unit of
the SLU compact, it was designed with small motors having
limited power. This places limits on the joint velocities that
can be attained by the SLU which can be stated as

q̇slu lo ≤ q̇slu ≤ q̇slu up (19)

where q̇slu lo and q̇slu up are lower and upper limits for
joint velocities attainable by the SLU secondary backbones
respectively. We can use the following matrix representation
for (19).

arg min
ṡ

∥∥Wg

(
ẋw

g − ẋw
g desired

)∥∥ (20a)

s.t. Ht q̇slu ≥ ht (20b)
ẋw

g =Jxs ṡ (20c)

where Ht =
(
I, −I

)t ∈ R
6×3 (21)

and ht =
(
q̇slu lo, −q̇slu up

)t ∈ R
6
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3) Avoiding joint limits: To ensure that the motion is within
the workspace of the system given by s lo and s up, we have
to satisfy the following condition

sL � s lo − s ≤ ṡ ∆T ≤ s up − s � sU (22)

In addition, we would also like to minimize extraneous motion
of the system joints to allow working in confined spaces.
We can add an objective function with weight Ws ∈ R

8×8,
minimizing the individual rate of state change, ṡ. It is of the
form

arg min
ṡ

∥∥Ws ṡ
∥∥ (23)

Equation (22) can be as

Hs ṡ ≥ hs

where Hs =
(
I, −I

)t ∈ R
16×8

and hs =
(
sL/∆T, sU /∆T

)t ∈ R
16

(24)

We shall represent the elements in vectors sL and sU that
correspond to the SLU by sL slu and sU slu respectively and
these can be defined by using the desired maximal SLU speeds
ψ̇̇ψ̇ψmax such that sL slu = −ψ̇̇ψ̇ψmax∆T and sU slu = ψ̇̇ψ̇ψmax∆T .

To summarize, cases 1-3 described above are all special
cases of (14). Explicitly, (14) can be reformulated by com-
bining all the minimized objective functions and constraints,
substituting the equality constraint of (14c) and using (12)
and (13) to give a combined optimization problem as given
by (25).

arg min
ṡ

∥∥∥∥

[
Wg 0

0 Ws

] ([
Jxs

I

]
ṡ −

[
ẋw

g desired
0

])∥∥∥∥ (25a)

s. t.

⎡

⎣
Hg 0 0

0 Ht 0

0 0 Hs

⎤

⎦

⎡

⎣
Jv[

0 Jlψ

]

I

⎤

⎦ ṡ ≥
⎡

⎣
hg

ht

hs

⎤

⎦ (25b)

The strength of this approach is that a large number of
constraints and objective function can be easily incorporated.
We can write all the constraints in terms of the state vector
ṡ by using the appropriate Jacobian matrix. This problem can
easily be solved numerically for the vector of state velocities
ṡ using methods presented in [26].

In (25a), the diagonal weight matrix Wg determines the
“penalty” for error in the desired trajectory while Ws de-
termines the “penalty” for high joint speeds of the LARS
and high bending rates of the SLU. These weight matrices
have different units; therefore, they are difficult to determine.
Yoshikawa [27] proposed using normalized velocities given by
q̂i = qi/qimax and v̂j = vj/vj max to overcome the problem
of different units. In our work, we chose to use the method
of Funda et al. [21] that scales weights such that the penalties
for a 1 mm positional error and a 1 deg rotational error are
equal. Accordingly, we used wtranslational = (π/180)×wrotational
and empirically determined the weights based on simulations.
The results of these simulations are presented in the following
section.

(a)

π/2 − θL = π/6

L = 45 mm

(b)

Fig. 6. Pictures of (a) SLU with a large and (b) equivalent bent rigid tool
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Fig. 7. Joint motions for test trajectory corresponding to Wg =
diag{13, 13, 13, 13, 13, 13} and
Ws = diag{1, 1, 1, 0.1π/180, 0.1π/180, 0.1π/180, 0.01π/180,

0.01π/180}

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

We performed two sets of simulations to determine the
efficacy of suturing in confined spaces. We used the SLU for
the first set of simulation and a bent rigid tool for the second
set of simulations. The shape and size of the rigid tool were
determined to be equivalent to the shape of the backbone of
the SLU in a bent configuration, Fig 6.

A goal trajectory was given such that the suture is ro-
tated about its center (as described in section III-A). The
desired angular velocity of the suture was 1 degree/second
about ẑg with zero translational velocity of its center. The
weight matrices Ws and Wg were empirically determined
and set to Wg = diag{13, 13, 13, 13, 13, 13} and
Ws = diag{1, 1, 1, 0.1π/180, 0.1π/180, 0.1π/180,
0.01π/180, 0.01π/180}.

Fig. 7 presents the results of the simulation for the case
where the SLU is used to rotate the suture about its center.
It is evident from this figure that the joints of the LARS do
not move significantly, except for the last rotational stage that
rotates the base of the snake. The radius of the sphere εg in
(15) was set to 1−4 mm. The center of the suture remained
within 1−9 mm from its desired position.

Fig. 8 presents the same simulation for the case where the
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Fig. 8. Joint motions for test trajectory when using a rigid tool
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Fig. 9. Experimental setup showing (a) the LARS, the SLU Unit and the
Optotrak and (b) a close-up of the SLU and gripper rigid body

suture is manipulated by the LARS while it is held by the
rigid tool in Fig. 6(b). The results show that the joints of the
LARS move significantly to compensate for the lack of distal
dexterity. These motions are not possible for throat MIS since
we have to manipulate several long tools passing through a
single entry port (the patient’s mouth). These results clearly
indicate the importance of maintaining tool tip dexterity to
avoid large motions in the proximal end of the tools.

A. Experimental Setup

Our experimental setup consists of the LARS robot and a
large model of the SLU (Fig. 9). Though the final design of the
robotic system for MIS is more compact and small, our current
system was easy to fabricate and served as a robust platform
for initial testing of our control. Three 4-Axis LoPoMoCo [28]
cards provide I/O operations of reading encoders and providing
analog outputs for motor voltage control. They also have
on-board power amplifiers to control low power motors. An
industrial PC (Pentium-II) houses these ISA cards and is used
for the servo control and user interface. The PC runs a Real-
Time Application Interface for Linux (RTAI), thus providing
crucial real-time functionality. Since the LoPoMoCo cards do
not provide position servoing, a basic position servo (PID)
is implemented in software. The optimized control algorithm
is implemented under the assumption that motions within a
single cycle are sufficiently small. Under this assumption, the
instantaneous kinematic relationship between state velocities

Center Line of wound
Ideal Path

Radius of Suture

Center of Rotation

EntryExit

Tissue surface

Typical length of suture
(3/8 or 1/2 circle)

PointPoint

Fig. 10. Ideal path of needle tip for minimal tissue tear is a circle with the
same radius as the suture needle and centered at needle center

and Cartesian velocities in (12) can be approximated by
∆xw

g /∆T = Jxs ∆s/∆T . We have our servo loop running
at 1 KHz and the optimized control algorithm loop running
at 0.1 KHz. The JHU modular control library (CISST) – a
C++ library providing object oriented interface to real-time
tasks and hardware, numerical methods and vector algebra,
is used for programming the robot. In our setup, there are
86 constraints in optimization problem in (25b) and with are
2GHz Pentium IV, the average time to solve for each iteration
is 1.6ms.

We performed two sets of experiments to validate our re-
sults. In the first set we used the readings of the motor encoders
and the direct kinematics to determine the motion/position
of the suture. In the second set of experiments we used the
Optotrak to measure the pose of the end disk of the SLU
and determine the motion of the suture. As mentioned in
Section III-A, for our setup the suturing motion simplifies to a
rotational motion about the center of end disk. Thus it suffices
to consider the position for the center of end disk during the
entire motion. A large error in the center would indicate the
tip of the needle has strayed away from the desired path and is
considered as undesirable motion. Figure 10 shows the ideal
path of the needle tip that would result in minimal tissue tear.

B. Experimental Results Based on Encoder Readings and
Direct Kinematics

We performed suturing motions using our system and
recorded the encoder positions of the robot joints for approx-
imately 180 seconds. We then used the forward kinematics of
the hybrid system to determine the position of the center of
suture. Fig. 11 shows the X, Y, and Z components of error,
pw

g − pw
g start

as computed by the forward kinematic model in
(10) using values provided by the motor encoders. This figure
represents the motion of the suture center caused by the control
algorithm and the robot controller while assuming an ideal
SLU (i.e., no deflections and backlash). All the weights and
control parameters for the redundancy resolution algorithm
were the same as the ones used in our simulations. It is seen
that the center of the suture is constrained within a sphere of
radius 0.8µm. The X, Y, and Z components of the error are

457



very small and indicate that our high-level control algorithm
generates a path that tracks the desired motions accurately.
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Fig. 11. X, Y, and Z components of pw
g − pw

g start
computed using motor

encoder readings, where pw
g is position of the gripper frame in world

coordinates at any given instant, and pw
g start

is the position of the gripper
frame at the beginning of suture biting motion.

C. Experimental Validation Based on Direct Measurements of
the Optotrak

To further validate our results, we used an independent
measurement to verify that the gripper frame was rotating
about the axis ẑg that passes through the center of the suture.
We selected the Optotrak 3020 from Northern Digital Inc.
(Waterloo, Canada) to provide optical measurement of the
gripper frame.

The instrumentation consisted of two rigid bodies, one
attached to the end of the disk of SLU, such that the reference
frame of the rigid body coincided with the origin of the gripper
frame. The other body was attached to the base of the robot to
provide a reference for measurements. We attached six active
markers to the end disk of the SLU and rotated the SLU
about an arbitrary direction (Fig. 9(b)). We used least-squares
fitting to determine the positions of these markers with respect
to the gripper frame by fitting the 3D position readings of
these markers to their respective circles of motion. Once these
positions were determined we performed suturing motion and
measured the 3D motion of the center of the suture. Data
was collected for approximately 180 seconds with an average
sampling rate of 5 Hz.

Fig. 12 shows the X, Y, and Z components of pw
g −pw

g start
as

measured by Optotrak. The center of the suture is constrained
in a sphere having a radius 1.84mm. As expected the errors
measured by Optotrak are higher than measured by encoders
alone, because of a number of factors that influence overall
accuracy. The main cause of error seems to be the backlash
in the large scale mock-up SLU. Also large scale mock-up
model of the SLU is much more compliant than the 4 mm
SLU because of the dimensions of its backbones compared to
its overall length and diameter (0.9 mm backbone diameter,
45mm length, and 27.6mm SLU diameter). The other cause
of error is the inability to accurately determine the home
configuration of the SLU in which all secondary backbones are
equal in length to the central backbone. We plan to eliminate

this source of error by providing absolute position measure-
ments using potentiometers in the 4mm SLU. Moreover, the
accuracy of the Optotrak tracking system (0.1mm, 1 deg) also
contributes to the overall error.
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Fig. 12. X, Y, and Z components of pw
g −pw

g start
measured by Optotrak 3020

from Northern Digital Inc.(Accuracy 0.1mm, 1 deg), where pw
g is position

of the gripper frame in world coordinates at any given instant, and pw
g start

is
the position of the gripper frame at the beginning of suture biting motion.

V. CONCLUSION

This paper presented the kinematic modeling and high
level control of a hybrid high DoF robots used for dexterous
applications such as suturing in confined spaces. The high level
control is based on a linearized multi-objective constrained
optimization that is easily extendable to include additional
constraints such as collision avoidance, anatomic-based con-
straints [22] and joint limits. The optimization problem is
solved numerically at rates compatible with real-time control.
The problem of suturing in confined spaces was formulated
as a redundancy resolution and trajectory planning problem
compatible with the optimization framework.

We have performed successful validation of our high level
control using an experimental 8-DoF robot, composed from a 6
DoF LARS robot and a large-scale model of a Snake-Like Unit
(SLU) used for distal dexterity. Simulations comparing sutur-
ing using the SLU verses a rigid tool to hold the suture were
presented. These results show that the motions of the proximal
joints are minimized if the distal dexterity is provided by the
SLU. This is a crucial requirement for suturing in confined
spaces, such as MIS of the throat. These simulations were
validated by experiments that determined the efficacy of our
high-level control and correctness of our kinematic modeling.
These experiments were performed based on encoder readings
and the forward kinematic model of the hybrid robot and
compared to independent readings from an optical tracking
device (Optotrak).

These results serve for validation of our high-level control
and electronic hardware to be used in the final version of a
tele-robotic system for MIS of the throat.
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