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Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI, Avenue Revolución 1500, Guadalajara,
Jal, Mexico
E-mail: daniel.zaldivar@cucei.udg.mx

Abstract: Circle detection over digital images has received considerable attention from the computer vision community over the
last few years devoting a tremendous amount of research seeking for an optimal detector. This article presents an algorithm for the
automatic detection of circular shapes from complicated and noisy images with no consideration of conventional Hough
transform (HT) principles. The proposed algorithm is based on Learning Automata (LA) which is a probabilistic optimisation
method that explores an unknown random environment by progressively improving the performance via a reinforcement
signal (objective function). The approach uses the encoding of three non-collinear points as a candidate circle over the edge
image. A reinforcement signal (matching function) indicates if such candidate circles are actually present in the edge map.
Guided by the values of such reinforcement signal, the probability set of the encoded candidate circles is modified through
the LA algorithm so that they can fit to the actual circles on the edge map. Experimental results over several complex
synthetic and natural images have validated the efficiency of the proposed technique regarding accuracy, speed and robustness.

1 Introduction

The problem of detecting circular features is very important for
image analysis, in particular for industrial applications such as
automatic inspection of manufactured products and
components, aided vectorisation of drawings, target detection
etc. [1]. Circular Hough transform (HT) [2] is arguably the
most common technique for circle detection in digital images.
A typical Hough-based approach employs an edge detector to
infer locations and radius values. Averaging, filtering and
histogramming of the transformed space are subsequently
applied. The approach demands a large storage space as three-
dimensional cells to store operational parameters (x, y, r),
seriously constraining the overall performance to low
processing speeds. In HT methods, circle’s parameters are
poorly defined under noisy conditions [3] yielding a longer
processing time which constrains their application. In order
to overcome such problems, researchers have proposed
new HT-based approaches such as the probabilistic HT [4],
the randomised HT (RHT) [5] and the fuzzy HT [6]. In [7],
Lu and Tan proposed a novel approach based on RHT called
iterative randomised HT (IRHT) that achieves better results on
complex images and noisy environments. Such
implementation applies iteratively the RHT to a given region
of interest which has been previously defined from the latest
estimation of ellipse/circle parameters.

Alternatively to the HT, the shape recognition problem in
computer vision has also been handled with optimisation
methods. In particular, genetic algorithms (GAs) have
recently been used for important shape detection tasks. For
instance, Roth and Levine [8] have proposed the use of GA
for extracting geometrical primitives. Lutton and Martinez
[9] have developed an improvement of the aforementioned

method, whereas Yao et al. [10] have proposed a
multipopulation GA to detect ellipses. In [11], GA have
been used for template matching despite the available
pattern that has been modified by an unknown affine
transformation. Ayala-Ramirez et al. [12] have presented a
GA-based circle detector which is able to detect multiple
circles on real images but failing frequently on imperfect
circles.

This paper assumes the circle detection problem as an
optimisation algorithm and develops an alternative approach
based on Learning Automata (LA) [13–15]. LA is an
adaptive decision-making method that operates at an unknown
random environment while progressively improving their
performance via a learning process. A probability density
function is defined over the parameter space where each
parameter (or parameters in case of a multidimensional
problem) represents an action which is applied to a random
environment. The corresponding response from the
environment, which is also known as reinforcement signal, is
used by the automata to update the probability density
function at each stage in order to select its next action. The
procedure continues until an optimal action is defined.

The main motivation behind the use of LA refers to its
abilities as global optimiser for multimodal surfaces.
Optimisation techniques based on LA fall into the random
search class. The distinguishing characteristic of automata-
based learning is that the searching for the optimal
parameter vector is performed within the space of
probability distributions which has been defined over the
parameter space rather than over the parameter space itself
[16]. Therefore, LA has been used to solve different sorts
of engineering problems, for instance, pattern recognition
[17], adaptive control [18], signal processing [19], power
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systems [20] and computer vision [21]. Other interesting
applications for multimodal complex function optimisation
based on the LA have been proposed in [19, 22–24], yet
showing that their performance is comparable to (GA) [23].

This paper presents an algorithm for the automatic
detection of circular shapes from complicated and noisy
images with no consideration of conventional HT
principles. The proposed algorithm LA requires the
probability of three encoded non-collinear edge points as
candidate circles (actions). A reinforcement signal indicates
whether such candidate circles are actually present in the
edge-only image. Guided by the values of such
performance evaluation function, the probability set of the
encoded candidate circles is modified using the LA
algorithm so that they can fit into the actual circles (optimal
action) in the edge map. The approach generates a sub-pixel
circle detector which can effectively identify circles in real
images despite circular objects exhibiting a significant
occluded portion. Experimental evidence shows its
effectiveness for detecting circles under different conditions.
A comparison to other state-of-the-art methods such as the
GA algorithm [12] and the IRHT approach [7] on multiple
images has demonstrated the improved performance of the
proposed method.

The paper is organised as follows: Section 2 provides a
brief outline of LA theory whereas Section 3 presents the
LA-based circle detector. Section 4 shows the results of
applying the LA algorithm for circle recognition under
several image conditions and Section 5 presents a
performance comparison between the proposed method and
other relevant techniques reported in the literature. Finally,
Section 6 discusses some relevant conclusions.

2 Learning automata

LA is a finite state machine that interacts to a stochastic
environment while learning about an optimal action which is
conditioned by the environment through a learning process.
Fig. 1a shows the typical LA system architecture. At each
instant k, the automaton B selects probabilistically an action
Bcurrent from the set of n actions. After applying such action
to the environment, a reinforcement signal b(Bcurrent) is
provided through the evaluation function. The internal
probability distribution p(k) ¼ {p1(k), p2(k), . . . , pn(k)} is
updated whereby actions that achieve desirable performance
are reinforced via an increased probability while those not-
performing actions are penalised or left unchanged
depending on the particular learning rule that has been used.
The procedure is repeated until the optimal action Boptimal is
found. From an optimisation-like perspective, the action with

the highest probability (optimal action) corresponds to the
global minimum as it is demonstrated by rigorous proofs of
convergence available in [16, 25].

The operation of an LA during one iteration consists of two
basic functions:

1. Probability updating: Based on the environmental
response to the selected action b(Bcurrent), the automaton
modifies the probability distribution p(k) over the set of
actions to p(k + 1).
2. Action selection: Based on the new probability distribution
p(k + 1), the automaton selects a new action Bnew that is
applied to the environment.

A wide variety of updating rules for probabilities have been
reported in the literature for LA. One of the most widely used
algorithms is the linear reward/inaction (LRI) scheme, which
has shown effective convergence properties (see [22]).
Considering an automaton B with n different actions, Br

represents the action r of a set of n possible actions. As a
response to an action Br, at time step k, the probabilities Br

p(k) are updated as follows

pr(k + 1) = pr(k) + ub(Br)(1 − pr(k))

pq(k + 1) = pq(k) − ub(Br)pq(k) if q = r
(1)

with u being the learning rate and 0 , u , 1, b(.) [ [0,1]
the reinforcement signal whose value b(.) ¼ 1 indicates the
maximum reward and b(.) ¼ 0 signals a null reward
considering r,q [ {1, . . . , n}. Using the LRI scheme, the
probability of successful actions will increase until they
become close to unity.

On the other hand, a uniformly distributed pseudo-random
number z is generated in the range [0, 1] for selecting the new
action Bnew [ (B1, B2, . . . , Bn) after considering the
probability density function p(k + 1). Thus, action l is
chosen as follows

∑l

h=1

ph(k + 1) . z (2)

Therefore the chosen action Bl triggers the environment
which responds through feedback b(Bl) and continues the
loop. As stop criterion, the LA algorithm is constrained to a
cycle number that is usually half of the number of actions
considered by the automaton. Once the cycle number has
been reached, the action holding the best probability value
is taken as the solution Boptimal.

Fig. 1 Parallel connection among automata

a Reinforcement learning system
b Its parallel connected automata
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In order to solve multidimensional problems, the LA can
also become connected to a parallel set-up (see Fig. 1b).
Each automaton operates with a simple parameter, whereas
its concatenation allows working within a multidimensional
space. There is no inter-automata communication as
the only joining path is through the environment. In [13],
it is shown how discrete stochastic LA can be used
to determine the global optimum for problems with
multimodal surfaces.

3 Circle detection using LA

3.1 Data pre-processing

In order to apply the LA circle detector, candidate images
must be pre-processed first by the well-known Canny
algorithm which yields a single-pixel edge-only image.
Then, the (xi, yi) coordinates for each edge pixel pi are
stored inside the edge vector P = {p1, p2, . . . , pNt

}, with Nt

being the total number of edge pixels. Following the RHT
technique in [12], only a representative percentage of edge
points (around 5%) are considered for building the new
vector array P = {p1, p2, . . . , pNp

}, where Np is the number
of edge pixels randomly selected from Pt.

3.2 Action representation

In order to construct each action Ci (circle candidate), the
indexes i1, i2 and i3, which represent three edge points
previously stored inside the vector P, must be grouped
assuming that the circle’s contour connects them. Therefore
the circle Ci = {pi1

, pi2
, pi3

} passing over such points may
be considered as a potential solution for the detection
problem. Considering the configuration of the edge points
shown in Fig. 2, the circle centre (x0, y0) and the radius r of
Ci can be characterised as follows

(x − x0)2 + (y − y0)2 = r2 (3)

where x0 and y0 are computed through the following
equations

x0 = det(A)

4((xi2
− xi1

)(yi3
− yi1

) − (xi3
− xi)(yi2

− yi1
))

y0 = det(B)

4((xi2
− xi)(yi3

− yi1
) − (xi3

− xi1
)(yi2

− yi1
))

(4)

with det(A) and det(B) representing determinants of matrices

A and B, respectively, considering

A =
x2

i2
+ y2

i2
− (x2

i1
+ y2

i1
) 2(yi1

− yi1
)

x2
i3
+ y2

i3
− (x2

i1
+ y2

i1
) 2(yi3

− yi1
)

[ ]

B =
2(xi2

− xi1
) x2

i2
+ y2

i2
− (x2

i1
+ y2

i1
)

2(xi3
− xi1

) x2
i3
+ y2

i3
− (x2

i1
+ y2

i1
)

[ ] (5)

the radius r can therefore be calculated using

r =
�������������������������
(x0 − xd)2 + (y0 − yd)2

√
(6)

where d [ {i1, i2, i3}, and (xd, yd) are the coordinates of any
of the three selected points which define the action Ci. Fig. 2
illustrates main parameters defined by (3)–(6).

The shaping parameters for the circle [x0, y0, r] can be
represented as a transformation T of the edge vector indexes
i1, i2 and i3.

[x0, y0, r] = T (i1, i2, i3) (7)

The total number of actions nall are generated considering all
feasible combinations of P. After calculating the circle
parameters (x0, y0, r) using (7), only the actions whose radii
fall into a determined range are considered. The allowed
range is defined as 8 , r , max(I(columns)/2, I(rows)/2)
where I(columns) and I(rows) represent the maximum
number of columns and rows, respectively, inside the
image. Moreover, actions that correspond to circles already
marked are eliminated. Hence, the final number of actions
nc represents the resulting solution set.

The LA solution is based on tracking the probability
evolution for each circle candidate, also known as actions, as
they are modified according to their actual affinity. Such
affinity is computed using an objective function which
determines if a circle candidate is actually present inside the
image. Following a number of cycles, the circle candidate
showing the highest probability value is assumed as a circle
actually present in the image.

Although the HT-based methods for circle detection also
use three edge points to cast one vote for a potential circular
shape in the parameter space, they require huge amounts of
memory and longer computational times to reach a sub-pixel
resolution. On the contrary, the LA method uses an objective
function yielding improvement at each generation step,
discriminating among non-plausible circles and avoiding
unnecessary testing of certain image points. However, both
methods require a compulsory evidence-collecting step for
future iterations.

3.3 Performance evaluation function b(†)

In order to model the environment’s reaction after an action Ci

is applied, the circumference coordinates of the circle
candidate Ci are calculated as a virtual shape which must be
validated, that is, if it really exists in the edge image. The
circumference coordinates are grouped within the test
set Si = {s1, s2, . . . , sNs

}, with Ns representing the number
of points over which the existence of an edge point,
corresponding to Ci, should be verified.

The test Si is generated by the midpoint circle algorithm
(MCA) [26] which is a well-known algorithm to determine
the required points for drawing a circle. MCA requires as
inputs only the radius r and the centre point (x0, y0)

Fig. 2 Circle candidate (action) formed from the combination of
points pi1

, pi2 and pi3
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considering only the first octant over the circle equation
x2 + y2 ¼ r2. It draws a curve starting at point (r, 0) and
proceeds upwards-left by using integer additions and
subtractions. The MCA aims to calculate the required points
Si in order to represent a circle candidate. Although the
algorithm is considered as the quickest providing a sub-
pixel precision, it is important to assure that points lying
outside the image plane must not be considered in Si.

The reinforcement signal b(Ci) represents the matching
error produced between the pixels Si of the circle candidate
Ci (action) and the pixels that actually exist in the edge-
only image, yielding

b(Ci) =
S

Ns
h=1E(sh)

Ns

(8)

where E(sh) is a function that verifies the pixel existence in sh,
being sh [ Si and Ns is the number of pixels lying over the
perimeter and corresponding to Ci, currently under testing.
Hence, the function E(sh) is defined as

E(sh) = 1 if the test pixel sh is an edge point
0 otherwise

{
(9)

A value of b(Ci) near to unity implies a better response from
the ‘circularity’ operator. Fig. 3 shows the procedure to
evaluate a candidate action Ci with its representation as a
virtual shape Si. Fig. 3a shows the original edge map,
whereas Fig. 3b presents the virtual shape Si representing the
action Ci = {pi1

, pi2
, pi3

}. In Fig. 3c, the virtual shape Si is
compared to the original image, point by point, in order to
find coincidences between virtual and edge points. The
action has been built from points pi, pj and pk which are
shown by Fig. 3a. The virtual shape Si, obtained by MCA,
gathers 56 points (Ns ¼ 56) with only 18 of them existing
in both images (shown as light grey points and dark grey
points in Fig. 3c) and yielding S

Ns
h=1E(sh) = 18, therefore

b(Ci) ≃ 0.33.
The LA algorithm is set to a pre-selected cycle limit that is

usually chosen to half the number of actions (nc/2) that form
the automaton. There are two cases to obtain a solution
(optimal action), either if one action (circle candidate)
generates a matching error b(†) under the pre-established
limit or takes the highest probability action at the end of the
learning process.

3.4 LA implementation

Considering the image has been pre-processed by a canny
filter, the LA-detector procedure can be summarised as
follows:

Step 1: Select 5% of edge pixels to build the P vector and
generate nall, considering all feasible combinations.
Step 2: Generate nc by calculating [x0, y0, r] ¼ T (i1, i2, i3)
from nall selecting actions which either fall into the scope or
are not repeated.
Step 3: Set iteration k ¼ 0.
Step 4: Initialise p(k) = {p1(k), p2(k), . . . , pnc

(k)} as a
uniform distribution.
Step 5: Repeat while k , (nc/2).
Step 6: Select a new action Cv [ (C1, C2, . . . , Cnc

) according
to p(k).
Step 7: Update p(k + 1) according to b(Cv) using (1).
Step 8: Increase k and jump to Step 6.
Step 9: End of while.
Step 10: After k . (nc/2), the solution Coptimal (circle) is the
highest element of p.

4 Experimental results

In order to evaluate the performance of the proposed LA circle
detector, several experimental tests are presented as follows:

1. Circle localisation.
2. Shape discrimination.
3. Multiple circle localisation.
4. Circular approximation.
5. Occluded circles and arc detection.
6. Complex cases.

Table 1 presents the experimental parameter set for the LA
implementation which has been experimentally determined
and kept for all test images through all experiments.

All the experiments are performed on a Pentium IV
2.5 GHz computer under C language programming with all
images being pre-processed by the standard Canny edge-
detector from the image-processing toolbox for MATLAB
R2008a.

Fig. 3 Environment reaction to an action Ci

a Original edge image
b Virtual shape Si corresponding to Ci

c Coincidences between both images through blue or red pixels while the virtual shape is also depicted in green
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4.1 Circle localisation

4.1.1 Synthetic images: The experimental set-up includes
the use of 20 synthetic images of 200 × 200 pixels. Each
image has been generated drawing only one imperfect circle
(ellipse shape), randomly located. Some images have been
contaminated by adding noise to increase the complexity in
the detection process. The experiment aims to detect the
centre of the circle position (x, y) and its radius (r),
allowing only 50 epochs for each test image. For all the
cases, the algorithm is able to detect best circle parameters
despite the noise influence. The detection is robust to
translation and scale keeping a reasonably low elapsed time
(typically under 0.1 s). Fig. 4 shows the results of the circle
detection acting over a synthetic image. Fig. 4b shows the
detected circle as an overlay, whereas Fig. 4c presents the
action’s probability distribution p(k) with the highest
probability action being represented by the highest peak.

4.1.2 Natural images: The experiment tests the LA circle
detector’s performance upon real-life images. Twenty-five
images of 640 × 480 pixels are used on the test. All images

have been captured by using digital camera under 8-bit
colour format. Each natural scene includes a circle shape
among other objects. All images are pre-processed using an
edge detection algorithm and then fed into the LA-based
detector. Fig. 5 shows a particular case from the 25 test
images. Real-life images rarely contain perfect circles so the
detection algorithm approximates the circle that better
adapts to the imperfect circle within a noisy image. Such
circle corresponds to the smallest error from the objective
function b(†). Detection results have been statistically
analysed for comparison purposes. For instance, the
detection algorithm is executed 100 times on the same
image (Fig. 5), yielding same parameters x0 ¼ 231,
y0 ¼ 301 and r ¼ 149. This indicates that the proposed LA
algorithm is able to converge to a minimum solution from
the objective function b(†).

4.2 Circle discrimination tests

4.2.1 Synthetic images: This section discusses on the
algorithm’s ability to detect circles despite the image
featuring any other shape. Five synthetic images of
540 × 300 pixels are considered for the experiment. Noise
has been added to all images as to increase the complexity
in the detection process. Fig. 6a shows a synthetic image
containing different shapes including an overlapped circle,
whereas Fig. 6b presents the detected circle marked by a
red overlay.

Table 1 LA circle detector parameters

kmax u

nc/2 0.003

Fig. 4 Circle detection and the evolution of the probability density parameters

a Original image
b Detected circle is shown as an overlay
c Parameter evolution yielding the probability density
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4.2.2 Natural images: The experiment is repeated
considering real-life images. Fig. 7 shows an example
containing one circular shape among others.

4.3 Multiple circle detection

The LA circle detector is also capable of detecting several
circles embedded into images. The approach is applied over
the edge-only image until the first circle is detected, that is,
the Coptimal circle holding the maximum probability value is

located. That shape is thus masked (i.e. eliminated) on the
primary edge-only image. Then, the LA circle detector
operates again over the modified image. The procedure is
repeated until the b(†) value reaches a minimum predefined
threshold Mth (typically 0.1). Finally, a validation over all
detected circles is performed by analysing continuity of the
detected circumference segments as proposed in [27]. If
none of the detected shapes satisfies the Mth criterion, the
system simply replies a negative response such as: ‘no
circle detected’.

Fig. 8a shows a natural image containing several circles.
For this case, the algorithm searches for the best circular
shapes (greater than Mth). Fig. 8b depicts the edge image
after applying the Canny algorithm and prior to be fed into
the LA algorithm.

4.4 Circular approximation

4.4.1 Synthetic images: In this paper, the circle detection
process is considered to be similar to an optimisation
problem. Hence, it is feasible to approximate other circular-
like shapes by means of concatenating circles. The LA
method is thus considered to detect circular patterns
showing the highest probability that can be subsequently
reshaped into a more complex geometry.

Fig. 9 shows the approximation over several shapes by
means of the circle concatenation. In particular Fig. 9b

Fig. 5 Circle detection on a natural image

Detected circle is shown as an overlay

Fig. 6 One sample synthetic image with a variety of shapes

a Sample input
b Detected circle

Fig. 7 Natural image with a variety of shapes

a Original image with an overlay for the detected circle
b Corresponding edge map
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Fig. 9 Approximating several shapes by means of circle concatenation

a and c Original images
b and d Their circle approximation

Fig. 8 Multiple circle detection on natural images

a Original image with an overlay of the detected circles
b Edge image generated by the canny algorithm prior to be considered by the LA algorithm

Fig. 10 Circular approximation on real-life images

a Original image with the detected circles
b Its edge map
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shows the circular approximation of a partial circular
shape and Fig. 9d presents the circular approximation
for an ellipse. For both cases, three circles are used
to approximate the original shape. Additionally, Fig. 10
shows the circular approximation considering a real-life image.

4.5 Occluded circles and arc detection

The LA circle detector algorithm is also able to detect
occluded or imperfect circles as well as partially defined
shapes such as arc segments. The LA algorithm achieves
the shape matching according to the probability value pi(k)
which represents a score value for a given shape candidate.

Fig. 11 shows two examples of occluded circles and arcs
detection.

4.6 Complex cases

In order to test the robustness of the LA algorithm, a
particular set of images containing impulsive noise is
prepared. They also include other added shapes that can be
considered as distracters. Fig. 12 presents the results after
applying the LA method to such an image set.

Fig. 13a shows an image containing six shapes that include
three semi-circular patterns. The first circle (top-left on
the image) is a quasi-perfect shape, whereas the second

Fig. 11 Occluded circles and arc detection

a Original synthetic image with two arcs
b Its circle detection
c Edge map of a natural occluded circle (the moon)
d Its detected circle as an overlay

Fig. 12 Circle detection over images with added shapes (distracters) and noise

a Original image with nine shapes
b Detection of four circles (overlaid)
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Fig. 14 Synthetic images and their detected circles for GA-based algorithm, the IRHT method and the proposed LA algorithm

a Detection with localised noise
b Figure discrimination
c Detection with Gaussian noise

Fig. 13 Circle detection on images containing different shapes (distracters)

a Original image including six shapes
b Detection of three imperfect circles
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(down-right in the image) is an occluded circle. The last circular
form has been hand drawn at the top-right area. Fig. 13b shows
the image after the circle detection process has been applied.

5 Performance comparison

In order to enhance the algorithm analysis, the LA algorithm
is compared to the GA [12] and the IRHT [7] circle detectors
over a set of different images.

5.1 Parametric set-up

In this comparison, the GA-detector follows the design from
Ayala-Ramirez et al. [12] in, considering a population size of
70 individuals. The crossover probability, which fixes the
threshold for dividing the actual parents’ contribution prior
to their re-combination into a new individual, is set to 0.55.
The mutation probability is considered as 0.10 as it defines
the probability of bit inversion within an individual.
Regarding the selection operator, the roulette-wheel method
is used. In this approach, each individual is assigned into

one slice of the roulette wheel. The size of the slice is
proportional to its normalised fitness value. The roulette-
wheel strategy favours best-fitted individuals but opens a
chance of survival for less-fitted individuals. The number of
elite individuals is set to two, implying that only the best
two individuals remain unaltered for the next generation.
Moreover, as it is reported in [12], the GA-detector
generates the test point set S = {s1(x1, y1), s2(x2,
y2), . . . , sNs

(xNs
, yNs

)} (used by the fitness function)
considering a uniform sampling of the shape boundary by
means of the following equations

xi = xc + r cos
2pi

Ns

( )

yi = yc + r sin
2pi

Ns

( ) (10)

where (xc, yc), r and Ns represent the circle centre, radius and
the desired test-point number, respectively.

Fig. 15 Real-life images and their detected circles for GA-based algorithm, the IRHT method and the proposed LA algorithm

a Circle detection in a real image
b Detection considering occlusion
c Circle assignment
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The comparative study also includes the IRHT algorithm
[7]. For circle/ellipse detection, the IRHT algorithm
iteratively applies the RHT to a region of interest within the
image space. Such region is determined from the latest
estimation of circle/ellipse parameters c ¼ [x0, y0, a, b, f]
plus a deviation vector Dc, where (x0, y0) are the centre
coordinates, a and b are the major and minor semi-axes and
f is the rotation angle. The detection performance of IRHT
depends on the values of Dc which is proportional to the
standard error vector sc ¼ [sx, sy, sa, sb, sf] from the
latest estimation of c. The comparison considers
Dc ¼ [0.5.sx, 0.5.sy, 0.5.sa, 0.5.sb, 0]. Such configuration
is the least sensitive to noisy images according to [7]. On
the other hand, Table 1 summarises final values for the LA
detector.

5.2 Error score and success rate

Images rarely contain perfectly shaped circles. Therefore in
order to test accuracy, the results are compared to ground-
truth circles that are manually detected from the original
edge map. The parameters (xtrue, ytrue, rtrue) of the ground-
truth circle are computed by using (2)–(5) considering three
circumference points from the manually detected circle. If
the centre and the radius of the detected circle are defined
as (xD, yD) and rD, then an error score can be computed as
follows

Es = h(|xtrue − xD| + |ytrue − yD|) + m|rtrue − rD| (11)

The first term represents the shift of the centre of the detected
circle as it is compared with the benchmark circle. The second
term accounts for the difference between their radii. h and m
are two weights that are chosen to agree the required accuracy
as h ¼ 0.05 and m ¼ 0.1. Such choice ensures that the radii
difference would be strongly weighted in comparison with
the difference of central circular positions between the
manually detected and the machine-detected circles.

In case Es is less than 1, the algorithm obtain a success;
otherwise it has failed on detecting the edge circle. Note
that for h ¼ 0.05 and m ¼ 0.1, it yields Es , 1 which
accounts for a maximal tolerated difference on radius length
of 10 pixels, whereas the maximum mismatch for the centre
location can be up to 20 pixels. In general, the success rate
(SR) can thus be defined as the percentage of reaching
success after a certain number of trials.

Fig. 14 shows three synthetic images and the results
obtained by the GA-based algorithm [12], the IRHT [7]
and the proposed approach. Fig. 15 presents the same

experimental results considering real-life images. The
results are averaged over 65 independent runs for each
algorithm. Table 2 shows the averaged execution time, the
SR in percentage and the averaged error score (Es)
following (10) for all three algorithms over six test images
shown by Figs. 14 and 15. The best entries are bold cased
in Table 2. A close inspection reveals that the proposed
method is able to achieve the highest SR and the smallest
error, still requiring less computational time for most cases.

6 Conclusions

This paper has presented an algorithm for the automatic
detection of circular shapes from complicated and noisy
images with no consideration of the conventional HT
principles. The detection process is considered to be similar
to an optimisation problem. The proposed algorithm is
based on LA which uses the probability of the three
encoded non-collinear edge points as candidate circles
(actions) within an edge-only image. A reinforcement signal
(matching function) indicates if such candidate circles are
actually present in the edge image. Guided by the values of
such performance evaluation function, the probability set of
the encoded candidate circles are evolved using the LA
algorithm so that they can fit into the actual circles (optimal
action) in the edge map.

Classical HT methods for circle detection use three edge
points to cast a vote for the potential circular shape in the
parameter space. However, they require huge amounts of
memory and longer computational times to obtain a sub-
pixel resolution. Moreover, the exact parameter set for a
detected circle after applying HT frequently does not match
the quantised parameter set, rarely finding the exact
parameter set for a circle in the image [28]. In our
approach, the detected circles are directly obtained from (3)
to (6), still reaching a sub-pixel accuracy.

In order to test the circle detection performance, speed and
accuracy have been compared. A score function [see (11)] has
been proposed to measure the accuracy yielding an effective
evaluation of the mismatch between a manually determined
and a machine-detected circle. Moreover, the experimental
evidence has demonstrated that the LA method outperforms
both the GA (as described in [12]) and the IRHT (as
described in [7]) within a statistically significant framework.
Table 2 also indicates that the LA method can yield better
results on complicated and noisy images in comparison
with the GA and the IRHT methods. However, this paper
does not aim to beat all the circle detector methods
proposed earlier, but to show that the LA algorithm can

Table 2 Averaged execution-time, the SR and the averaged Es for the GA-based algorithm, the IRHT method and the proposed LA

algorithm, considering six test images shown by Figs. 14 and 15

Image Averaged execution time + standard

deviation, s

Success rate, % Averaged Es + standard deviation

GA IRHT LA GA IRHT LA GA IRHT LA

Synthetic images

(a) 2.23 + (0.41) 1.71 + (0.51) 0.21 +++++ (0.22) 94 100 100 0.41 + (0.044) 0.33 + (0.052) 0.22 +++++ (0.033)

(b) 3.15 + (0.39) 2.80 + (0.65) 0.36 +++++ (0.24) 81 95 98 0.51 + (0.038) 0.37 + (0.032) 0.26 +++++ (0.041)

(c) 3.02 + (0.63) 4.11 + (0.71) 0.64 +++++ (0.19) 93 78 100 0.71 + (0.036) 0.77 + (0.044) 0.42 +++++ (0.011)

Natural images

(a) 2.02 + (0.32) 3.11 + (0.41) 0.31 +++++ (0.12) 100 100 100 0.45 + (0.051) 0.41 + (0.029) 0.25 +++++ (0.037)

(b) 2.11 + (0.31) 3.04 + (0.29) 0.57 +++++ (0.13) 100 92 100 0.87 + (0.071) 0.71 + (0.051) 0.54 +++++ (0.071)

(c) 2.50 + (0.39) 2.80 + (0.17) 0.51 +++++ (0.11) 91 80 97 0.67 + (0.081) 0.61 + (0.048) 0.31 +++++ (0.015)
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effectively serve as an attractive method to successfully
extract multiple circular shapes.
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