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Abstract 
 

 

Circle detection over digital images has received considerable attention from the computer vision community over the 

last few years devoting a tremendous amount of research seeking for an optimal detector. This article presents an 

algorithm for the automatic detection of circular shapes from complicated and noisy images with no consideration of 

conventional Hough transform principles. The proposed algorithm is based on Learning Automata (LA) which is a 

probabilistic optimization method that explores an unknown random environment by progressively improving the 

performance via a reinforcement signal (objective function). The approach uses the encoding of three non-collinear 

points as a candidate circle over the edge image. A reinforcement signal (matching function) indicates if such 

candidate circles are actually present in the edge map. Guided by the values of such reinforcement signal, the 

probability set of the encoded candidate circles is modified through the LA algorithm so that they can fit to the actual 

circles on the edge map. Experimental results over several complex synthetic and natural images have validated the 

efficiency of the proposed technique regarding accuracy, speed and robustness. 
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1. Introduction 

 

The problem of detecting circular features is very important for image analysis, in particular for industrial 

applications such as automatic inspection of manufactured products and components, aided vectorization 

of drawings, target detection, etc. [1].  Circular Hough transform [2] is arguably the most common 

technique for circle detection in digital images. A typical Hough-based approach employs an edge 

detector to infer locations and radius values. Averaging, filtering and histogramming of the transformed 

space are subsequently applied. The approach demands a large storage space as 3-D cells to store 

operational parameters (x, y, r), seriously constraining the overall performance to low processing speeds. 

In Hough Transform methods, circle‟s parameters are poorly defined under noisy conditions [3] yielding 

a longer processing time which constraints their application. In order to overcome such problems, 

researchers have proposed new Hough transform-based (HT) approaches such as the probabilistic HT [4], 

the randomized HT (RHT) [5] and the fuzzy HT (FHT) [6]. In [7], Lu & Tan proposed a novel approach 

based on RHT called Iterative Randomized HT (IRHT) that achieves better results on complex images 

and noisy environments. Such implementation applies iteratively the RHT to a given region of interest 

which has been previously defined from the latest estimation of ellipse/circle parameters. 

 

Alternatively to the Hough Transform, the shape recognition problem in computer vision has also been 

handled with optimization methods. In particular, Genetic Algorithms (GA) have recently been used for 

important shape detection tasks. For instance, Roth and Levine have proposed the use of GA for 

extracting geometrical primitives [8]. Lutton et al have developed an improvement of the aforementioned 

method in [9] while Yao et al have proposed a multi-population GA to detect ellipses [10]. In [11], GA 

have been used for template matching despite the available pattern has been modified by an unknown 

affine transformation. Ayala–Ramirez et al have presented a GA based circle detector in [12] which is 

able to detect multiple circles on real images but failing frequently on imperfect circles. 

 

This paper assumes the circle detection problem as an optimization algorithm and develops an alternative 

approach based on Learning Automata (LA) [13-15]. LA is an adaptive decision making method that 

operate at an unknown random environment while progressively improving their performance via a 

learning process. A probability density function is defined over the parameter space where each parameter 
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(or parameters in case of a multidimensional problem) represents an action which is applied to a random 

environment. The corresponding response from the environment, which is also known as reinforcement 

signal, is used by the automata to update the probability density function at each stage in order to select 

its next action. The procedure continues until an optimal action is defined. 

 

The main motivation behind the use of LA refers to its abilities as global optimizer for multimodal 

surfaces. Optimization techniques based on Learning Automata (LA) fall into the random search class. 

The distinguishing characteristic of automata-based learning is that the searching for the optimal 

parameter vector is performed within the space of probability distributions which has been defined over 

the parameter space rather than over the parameter space itself [16]. Therefore LA has been employed to 

solve different sorts of engineering problems, for instance, pattern recognition [17], adaptive control [18], 

signal processing [19], power systems [20] and computer vision [21]. Other interesting applications for 

multimodal complex function optimization based on the LA have been proposed in [19, 22, 23, 24], yet 

showing that their performance is comparable to (GA) [23]. 

 

This paper presents an algorithm for the automatic detection of circular shapes from complicated and 

noisy images with no consideration of conventional Hough transform principles. The proposed algorithm 

LA requires the probability of three encoded non-collinear edge points as candidate circles (actions). A 

reinforcement signal indicates if such candidate circles are actually present in the edge-only image. 

Guided by the values of such performance evaluation function, the probability set of the encoded 

candidate circles is modified using the LA algorithm so that they can fit into the actual circles (optimal 

action) in the edge map.  The approach generates a sub-pixel circle detector which can effectively identify 

circles in real images despite circular objects exhibiting a significant occluded portion. Experimental 

evidence shows its effectiveness for detecting circles under different conditions. A comparison to other 

state-of-the-art methods such as the GA algorithm [12] and the Iterative Randomized Hough Transform 

approach (IRHT) [7] on multiple images has demonstrated the improved performance of the proposed 

method. 

 

The paper is organized as follows: Section 2 provides a brief outline of LA theory while Section 3 

presents the LA-based circle detector. Section 4 shows the results of applying the LA algorithm for circle 
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recognition under several image conditions and section 5 presents a performance comparison between the 

proposed method and other relevant techniques reported in the literature. Finally Section 6 discusses on 

some relevant conclusions. 

 

2. Learning automata (LA) 

 

LA is a finite state machine that interacts to a stochastic environment while learning about an optimal 

action which is conditioned by the environment through a learning process. Figure 1a shows the typical 

LA system architecture. At each instant k, the automaton B  selects probabilistically an action
currentB from 

the set of n actions. After applying such action to the environment, a reinforcement signal ( )currentB is 

provided through the evaluation function. The internal probability distribution 

 1 2( ) ( ), ( ), , ( )nk p k p k p kp  is updated whereby actions that achieve desirable performance are 

reinforced via an increased probability while those not-performing actions are penalized or left unchanged 

depending on the particular learning rule which has been employed. The procedure is repeated until the 

optimal action optimalB  is found. From an optimization-like perspective, the action with the highest 

probability (optimal action) corresponds to the global minimum as it is demonstrated by rigorous proofs 

of convergence available in [16] and [25]. 

 

Figure 1. (a) The reinforcement learning system and (b) its parallel connected automata. 

 

 
The operation of a LA during one iteration consists of two basic functions: 

 

(a) Probability updating. Based on the environmental response to the selected action ( )currentB , the 

automaton modifies the probability distribution ( )kp  over the set of actions to ( 1)k p . 

 

(b) Action selection. Based on the new probability distribution ( 1)k p , the automaton selects a new 

action 
newB  that is applied to the environment. 

 

A wide variety of updating rules for probabilities have been reported in the literature for LA. One of the 

most widely used algorithms is the linear reward/inaction ( RIL ) scheme, which has shown effective 
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convergence properties (see [22]). Considering an automaton B  with n different actions, 
rB represents 

the action r of a set of n possible actions.  As a response to an action
rB , at time step k, the probabilities 

( )kp  are updated as follows: 

 

                                       ( 1) ( ) ( ) (1 ( ))r r r rp k p k B p k        

                                       ( 1) ( ) ( ) ( )q q r qp k p k B p k      ,  if q r  

(1) 

 

with   being the learning rate and 0 1  , ( ) [0,1]    the reinforcement signal whose value ( ) 1    

indicates the maximum reward and ( ) 0   signals a null reward considering  , 1, ,r q n . Using the 

RIL scheme, the probability of successful actions will increase until they become close to unity.  

 

On the other hand, a uniformly distributed pseudo-random number z is generated in the range [0, 1] for 

selecting the new action 
1 2( , , )new nB B B B  after considering the probability density function ( 1)k p . 

Thus action l is chosen following: 

 

1

( 1)

l

h

h

p k z



   (2) 

 

Therefore, the chosen action 
lB  triggers the environment which responds through feedback ( )lB and 

continues the loop. As stop criteria, the LA algorithm is constraint to a cycle number that is usually half 

of the number of actions considered by the automaton. Once the cycle number has been reached, the 

action holding the best probability value is taken as the solution optimalB . 

In order to solve multidimensional problems, the learning automata can also become connected to a 

parallel setup (see Figure 1b). Each automaton operates with a simple parameter while its concatenation 

allows working within a multidimensional space. There is no inter-automata communication as the only 

joining path is through the environment. In [13], it is shown how discrete stochastic learning automata 

can be used to determine the global optimum for problems with multi-modal surfaces. 
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3. Circle detection using LA 

 

3.1. Data preprocessing 

 

In order to apply the LA circle detector, candidate images must be preprocessed first by the well-known 

Canny algorithm which yields a single-pixel edge-only image. Then, the ( , )i ix y coordinates for each 

edge pixel 
ip  are stored inside the edge vector  1 2, , ,

tt NP p p p , with 
tN being the total number of 

edge pixels. Following the RHT technique in [12], only a representative percentage of edge points 

(around 5%) are considered for building the new vector array  1 2, , ,
pNP p p p , where 

pN  is the 

number of edge pixels randomly selected from
tP . 

 

3.2. Action representation 

 

In order to construct each action 
iC (circle candidate), the indexes 

1i , 
2i  and 

3i , which represent three 

edge points previously stored inside the vector P, must be grouped assuming that the circle‟s contour 

connects them. Therefore, the circle 
1 2 3

{ , , }i i i iC p p p  passing over such points may be considered as a 

potential solution for the detection problem. Considering the configuration of the edge points shown by 

Figure 2, the circle center 
0 0( , )x y and the radius r of 

iC can be characterized as follows: 

 

2 2 2

0 0( ) ( )x x y y r     (3) 

 

where 0x  and 0y  are computed through the following equations: 

 

2 1 3 1 3 2 1

0

det( )

4(( )( ) ( )( ))i i i i i i i i

x
x x y y x x y y


    

A
,

2 3 1 3 1 2 1

0

det( )

4(( )( ) ( )( ))i i i i i i i i

y
x x y y x x y y


    

B

, 

(4) 

with det(A) and det(B) representing determinants of matrices A and B respectively, considering: 
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2 2 1 1 1 1

3 3 1 1 3 1

2 2 2 2

2 2 2 2

( ) 2 ( )

( ) 2 ( )

i i i i i i

i i i i i i

x y x y y y

x y x y y y

     
  

      

A 2 1 2 2 1 1

3 1 3 3 1 1

2 2 2 2

2 2 2 2

2 ( ) ( )

2 ( ) ( )

i i i i i i

i i i i i i

x x x y x y

x x x y x y

     
  

      

B , 
(5) 

the radius r can therefore be calculated using: 

2 2

0 0( ) ( )d dr x x y y    , (6) 

where  1 2 3, ,d i i i , and ( , )d dx y are the coordinates of any of the three selected points which define the 

action 
iC . Figure 2 illustrates main parameters defined by Equations (3)-(6). 

 

Fig. 2. Circle candidate (action) formed from the combination of points
1i

p ,
2i

p and
3i

p . 

 

The shaping parameters for the circle, [
0x ,

0y , r] can be represented as a transformation T of the edge 

vector indexes 
1i , 

2i and 
3i . 

 

 0 0 1 2 3, , ( , , )x y r T i i i  (7) 

 

The total number of actions 
alln  is generated considering all feasible combinations of P. After calculating 

the circle parameters 
0 0( , , )x y r using Eq. (7), only the actions whose radii fall into a determined range are 

considered. The allowed range is defined as 8<r<max( I(columns)/2, I(rows)/2) where I(columns) and 

I(rows) represent the maximum number of columns and rows respectively inside the image. Moreover, 

actions that correspond to circles already marked are eliminated. Hence, the final number of actions
cn , 

represents the resulting solution set.  

 

The LA solution is based on tracking the probability evolution for each circle candidate, also known as 

actions, as they are modified according to their actual affinity. Such affinity is computed using an 

objective function which determines if a circle candidate is actually present inside the image. Following a 

number of cycles, the circle candidate showing the highest probability value is assumed as a circle 

actually present in the image. 

 

Although the HT based methods for circle detection also use three edge points to cast one vote for a 

potential circular shape in the parameter space, they require huge amounts of memory and longer 
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computational times to reach a sub-pixel resolution. On the contrary, the LA method employs an 

objective function yielding improvement at each generation step, discriminating among non-plausible 

circles and avoiding unnecessary testing of certain image points. However, both methods require a 

compulsory evidence-collecting step for future iterations.  

 

3.3 Performance evaluation function ( )  

 

In order to model the environment‟s reaction after an action
iC is applied, the circumference coordinates 

of the circle candidate 
iC  are calculated as a virtual shape which must be validated, i.e. if it really exists 

in the edge image. The circumference coordinates are grouped within the test set
 1 2{ , , , }

si NS s s s , 

with 
sN representing the number of points over which the existence of an edge point, corresponding to 

iC ,  should be verified. 

 

The test 
iS is generated by the midpoint circle algorithm (MCA) [26] which is a well-known algorithm to 

determine the required points for drawing a circle. MCA requires as inputs only the radius r and the 

center point 0 0( , )x y considering only the first octant over the circle equation x
2
 + y

2
 = r

2
. It draws a curve 

starting at point (r, 0) and proceeds upwards-left by using integer additions and subtractions. The MCA 

aims to calculate the required points iS  in order to represent a circle candidate. Although the algorithm is 

considered as the quickest providing a sub-pixel precision, it is important to assure that points lying 

outside the image plane must not be considered in 
iS . 

 

The reinforcement signal ( )iC  represents the matching error produced between the pixels iS  of the 

circle candidate iC  (action) and the pixels that actually exist in the edge-only image, yielding: 

 

1

( )

( )

sN

h

h

i

s

E s

C
N

 


 

(8) 

 

http://en.wikipedia.org/wiki/Circle
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where ( )hE s is a function that verifies the pixel existence in 
hs , being 

h is S  and 
sN  is the number of 

pixels lying over the perimeter and corresponding to 
iC , currently under testing. Hence the function 

( )hE s is defined as: 

 

1 if the test pixel  is an edge point
( )

0 otherwise

h

h

s
E s


 


 (9) 

 

A value of ( )iC  near to unity implies a better response from the “circularity” operator. Figure 3 shows 

the procedure to evaluate a candidate action 
iC  with its representation as a virtual shape

iS . Figure 3(a) 

shows the original edge map, while Figure 3(b) presents the virtual shape 
iS  representing the 

action
1 2 3

{ , , }i i i iC p p p . In Figure 3(c), the virtual shape 
iS  is compared to the original image, point by 

point, in order to find coincidences between virtual and edge points. The action has been built from 

points
ip ,

jp and
kp  which are shown by Fig. 3(a). The virtual shape

iS , obtained by MCA, gathers 56 

points (
sN = 56) with only 18 of them existing in both images (shown as blue points plus red points in 

Fig. 3(c)) and yielding: 

1

( ) 18

Ns

h

h

E s



 , therefore ( ) 0.33iC  . 

 
Fig. 3. Environment reaction to an action

iC : The image shown by (a) presents the original edge image while (b) 

portraits the virtual shape 
iS  corresponding to 

iC . The image in (c) shows coincidences between both images 

through blue or red pixels while the virtual shape is also depicted in green. 

 

 

The LA algorithm is set to a pre-selected cycle limit that is usually chosen to half the number of actions 

( / 2)cn that form the automaton. There are two cases to obtain a solution (optimal action), either if one 

action (circle candidate) generates a matching error ( ) under the pre-established limit or takes the 

highest probability action at the end of the learning process. 

 

3.4. LA implementation   

 

Considering the image has been pre-processed by a canny filter, the LA-detector procedure can be 

summarized as follows: 
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Step 1: Select 5% of edge pixels to build the P vector and generate
alln , considering all feasible 

combinations. 

Step 2: Generate 
cn  by calculating  0 0 1 2 3, , ( , , )x y r T i i i  from 

alln  selecting actions which either 

fall into the scope or are not repeated.  

Step 3: Set iteration k=0. 

Step 4: Initialize  1 2( ) ( ), ( ), , ( )
cnk p k p k p kp  as a uniform distribution. 

Step 5: Repeat while ( / 2)ck n  

Step 6: Select a new action 1 2( , , )
cv nC C C C  according to ( )kp . 

Step 7: Update ( 1)k p  according to ( )vC  using Eq.(1). 

Step 8: Increase k  and jump to step 6. 

Step 9: end of while. 

Step 10: After ( / 2)ck n , the solution 
optimalC (circle) is the highest element of p . 

 

4. Experimental results 

In order to evaluate the performance of the proposed LA circle detector, several experimental tests are 

presented as follows: 

(1) Circle localization 

(2) Shape discrimination 

(3) Multiple circle localization 

(4) Circular approximation 

(5) Occluded circles and arc detection 

(6) Complex cases 

Table 1 presents the experimental parameter set for the LA implementation which has been 

experimentally determined and kept for all test images through all experiments. 

 

Table 1. LA circle detector parameters 
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All the experiments are performed on a Pentium IV 2.5 GHz computer under C language programming 

with all images being preprocessed by the standard Canny edge-detector from the image-processing 

toolbox for MATLAB R2008a.   

 

4.1 Circle localization 

4.1.1. Synthetic images 

 

The experimental setup includes the use of twenty synthetic images of 200x200 pixels. Each image has 

been generated drawing only one imperfect circle (ellipse shape), randomly located. Some images have 

been contaminated by adding noise to increase the complexity in the detection process. The experiment 

aims to detect the center of the circle position (x, y) and its radius (r), allowing only 50 epochs for each 

test image. For all the cases, the algorithm is able to detect best circle parameters despite the noise 

influence. The detection is robust to translation and scale keeping a reasonably low elapsed time 

(typically under 0.1 s). Figure 4 shows the results of the circle detection acting over a synthetic image. 

Figure 4b shows the detected circle as an overlay while Figure 4c presents the action‟s probability 

distribution ( )kp with the highest probability action being represented by the highest peak. 

 

Fig. 4. Circle detection and the evolution of the probability density parameters. (a) Original image. (b) The detected 

circle is shown as an overlay, (c) parameter evolution yielding the probability density. 

 

 

4.1.2. Natural images 

The experiment tests the LA circle detector‟s performance upon real-life images. Twenty five images of 

640x480 pixels are used on the test. All images have been captured by using digital camera under 8-bit 

color format. Each natural scene includes a circle shape among other objects. All images are preprocessed 

using an edge detection algorithm and then fed into the LA-based detector. Figure 5 shows a particular 

case from the 25 test images. Real-life images rarely contain perfect circles so the detection algorithm 

approximates the circle that better adapts to the imperfect circle within a noisy image. Such circle 

corresponds to the smallest error from the objective function ( ) . Detection results have been 

statistically analyzed for comparison purposes. For instance, the detection algorithm is executed 100 

times on the same image (Figure 5), yielding same parameters
0 231x  , 

0 301y  , and r = 149. This 
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indicates that the proposed LA algorithm is able to converge to a minimum solution from the objective 

function ( ) .  

 

Fig. 5. Circle detection on a natural image. Detected circle is shown as an overlay. 

 

4.2. Circle discrimination tests 

4.2.1. Synthetic images 

This section discusses on the algorithm‟s ability to detect circles despite the image featuring any other 

shape. Five synthetic images of 540x300 pixels are considered for the experiment. Noise has been added 

to all images as to increase the complexity in the detection process. Figure 6a shows a synthetic image 

containing different shapes including an overlapped circle, while Figure 6b presents the detected circle 

marked by a red overlay. 

 
Fig. 6. One sample synthetic image with a variety of shapes. (a) sample input (b) the detected circle.  

 

 

4.2.2. Natural images 

 

The experiment is repeated considering real-life images. Figure 7 shows an example containing one 

circular shape among others. 

 

4.3. Multiple circle detection 

 

The LA circle detector is also capable of detecting several circles embedded into images. The approach is 

applied over the edge-only image until the first circle is detected, i.e. the 
optimalC  circle holding the 

maximum probability value is located. That shape is thus masked (i.e. eliminated) on the primary edge-

only image. Then, the LA circle detector operates again over the modified image. The procedure is 

repeated until the ( )  value reaches a minimum predefined threshold thM  (typically 0.1). Finally, a 

validation over all detected circles is performed by analyzing continuity of the detected circumference 

segments as proposed in [27]. If none of the detected shapes satisfies the thM  criterion, the system simply 

reply a negative response such as: “no circle detected”.   

 

Fig. 7. Natural image with a variety of shapes: (a) the original image with an overlay for the detected circle and (b) 

the corresponding edge map. 
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Figure 8a shows a natural image containing several circles. For this case, the algorithm searches for the 

best circular shapes (greater than
thM ). Figure 8b depicts the edge image after applying the Canny 

algorithm and prior to be fed into the LA algorithm. 

 

4.4 Circular approximation 

4.4.1. Synthetic images 

In this paper, the circle detection process is considered to be similar to an optimization problem. Hence it 

is feasible to approximate other circular-like shapes by means of concatenating circles. The LA method is 

thus considered to detect circular patterns showing the highest probability that can be subsequently 

reshaped into a more complex geometry. 

 
Fig. 8. Multiple circle detection on natural images: (a) the original image with an overlay of the detected circles and 

(b) edge image generated by the canny algorithm prior to be considered by the LA algorithm.  

 

 
Fig. 9. Approximating several shapes by means of circle concatenation:  (a)-(c) original images, (b)-(d) their circle 

approximation. 

 

Figure 9 shows the approximation over several shapes by means of the circle concatenation. In particular 

Figure 9b shows the circular approximation of a partial circular shape and Figure 9d presents the circular 

approximation for an ellipse. For both cases, three circles are used to approximate the original shape. 

Additionally, Figure 10 shows the circular approximation considering a real-life image.  

 

Fig. 10. Circular approximation on real-life images: (a) the original image with the detected circles and (b) its edge 

map. 
 

 
Fig. 11. Occluded circles and arc detection: (a) Original synthetic image with two arcs, (b) its circle detection, (c) 

edge map of a natural occluded circle (the moon), (d) its detected circle as an overlay. 

 

 

 

4.5 Occluded circles and arc detection 

 

The LA circle detector algorithm is also able to detect occluded or imperfect circles as well as partially 

defined shapes such as arc segments. The LA algorithm achieves the shape matching according to the 

probability value ( )ip k  which represents a score value for a given shape candidate. Figure 11 shows two 

examples of occluded circles and arcs detection. 
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4.6 Complex cases 

 

In order to test the robustness of the LA algorithm, a particular set of images containing impulsive noise 

is prepared. They also include other added shapes which can be considered as distracters. Figure 12 

presents the results after applying the LA method to such image set. 

 

Fig. 12. Circle detection over images with added shapes (distracters) and noise: (a) original image with nine shapes, 

(b) detection of four circles (overlaid). 

 

 

Figure 13a shows an image containing six shapes which include three semi-circular patterns. The first 

circle (top-left on the image) is a quasi-perfect shape while the second (down-right in the image) is an 

occluded circle. The last circular form has been hand-drawn at the top-right area. Figure 13b shows the 

image after the circle detection process has been applied. 

 
Fig. 13. Circle detection on images containing different shapes (distracters): (a) Original image including six shapes, 

(b) Detection of three imperfect circles. 

 

5.  Performance comparison 

In order to enhance the algorithm analysis, the LA algorithm is compared to the GA [12] and the IRHT 

[7] circle detectors over a set of different images.   

 

5.1 Parametric setup 

In this comparison, the GA-detector follows the design from Ayala-Ramirez et al. in [12], considering a 

population size of 70 individuals. The crossover probability, which fixes the threshold for dividing the 

actual parents’ contribution prior to their re-combination into a new individual, is set to 0.55.  The 

mutation probability is considered as 0.10 as it defines the probability of bit-inversion within an 

individual. Regarding the selection operator, the roulette wheel method is employed. In this approach, 

each individual is assigned into one slice of the roulette wheel. The size of the slice is proportional to its 

normalized fitness value. The roulette-wheel strategy favors best fitted individuals but opens a chance of 

survival for less fitted individuals. The number of elite individuals is set to two, implying that only the 

best two individuals remain unaltered for the next generation. Moreover, as it is reported in [12], the GA-

detector generates the test point set 1 1 1 2 2 2{ ( , ), ( , ), , ( , )}
s s sN N NS s x y s x y s x y  (used by the fitness 

function) considering a uniform sampling of the shape boundary by means of the following equations: 
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2
cosi c

s

i
x x r

N

  
    

 
 

2
sini c

s

i
y y r

N

  
    

 
 

 

(10) 

 

where ( , )c cx y , r, and 
sN  represent the circle centre, radius and the desired test-point number, 

respectively. 

 

The comparative study also includes the IRHT algorithm [7]. For circle/ellipse detection, the IRHT 

algorithm iteratively applies the randomized Hough transform (RHT) to a region of interest within the 

image space. Such region is determined from the latest estimation of circle/ellipse parameters 

0 0[ , , , , ]x y a b c  plus a deviation vector
c

Δ , where 
0 0( , )x y are the center coordinates, a and b are the 

major and minor semi-axes and   is the rotation angle. The detection performance of IRHT depends on 

the values of 
c

Δ  which are proportional to the standard error vector [ , , , , ]x y a b     
c
σ  from the 

latest estimation of c. The comparison considers 0.5 ,0.5 ,0.5 ,0.5 ,0x y a b         c
Δ . Such 

configuration is the least sensitive to noisy images according to [7]. On the other hand, Table 1 

summarizes final values for the LA-detector. 

 

5.2 Error score and success rate 

 

Images rarely contain perfectly-shaped circles. Therefore, in order to test accuracy, the results are 

compared to ground-truth circles which are manually detected from the original edge-map. The 

parameters ( , , )true true truex y r of the ground-truth circle are computed by using Equations 2-5 considering 

three circumference points from the manually detected circle. If the centre and the radius of the detected 

circle are defined as ( , )D Dx y and Dr , then an error score can be computed as follows: 

 

 = true D true D true DEs x x y y r r         (11) 
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The first term represents the shift of the centre of the detected circle as it is compared to the benchmark 

circle. The second term accounts for the difference between their radii.   and   are two weights which 

are chosen to agree the required accuracy as 0.05  and 0.1  . Such choice ensures that the radii 

difference would be strongly weighted in comparison to the difference of central circular positions 

between the manually detected and the machine-detected circles.  

 

In case Es is less than 1, the algorithm gets a success; otherwise it has failed on detecting the edge-circle. 

Notice that for 0.05   and 0.1  , it yields Es<1 which accounts for a maximal tolerated difference on 

radius length of 10 pixels, whereas the maximum mismatch for the centre location can be up to 20 pixels. 

In general, the success rate (SR) can thus be defined as the percentage of reaching success after a certain 

number of trials. 

 

Figure 14 shows three synthetic images and the results obtained by the GA-based algorithm [12], the 

IRHT [7] and the proposed approach. Figure 15 presents the same experimental results considering real-

life images. The results are averaged over 65 independent runs for each algorithm. Table 2 shows the 

averaged execution time, the success rate in percentage, and the averaged error score (Es) following  

Equation (10) for all three algorithms over six test images shown by Figures 14 and 15. The best entries 

are bold-cased in Table 2. A close inspection reveals that the proposed method is able to achieve the 

highest success rate and the smallest error, still requiring less computational time for most cases. 

 

Table 2. The averaged execution-time, the success rate and the averaged Es for the GA-based algorithm, the IRHT 

method and the proposed LA algorithm, considering six test images shown by Figures 14 and 15. 

 
 

Fig. 14. Synthetic images and their detected circles for GA-based algorithm, the IRHT method and the proposed LA 

algorithm. 

 

 
Fig. 15. Real-life images and their detected circles for GA-based algorithm, the IRHT method and the proposed LA 

algorithm. 

 

 

6. Conclusions 

 

 

This paper has presented an algorithm for the automatic detection of circular shapes from complicated 

and noisy images with no consideration of the conventional Hough transform principles. The detection 

process is considered to be similar to an optimization problem. The proposed algorithm is based on 
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Learning Automata (LA) which uses the probability of the three encoded non-collinear edge points as 

candidate circles (actions) within an edge-only image. A reinforcement signal (matching function) 

indicates if such candidate circles are actually present in the edge image. Guided by the values of such 

performance evaluation function, the probability set of the encoded candidate circles are evolved using 

the LA algorithm so that they can fit into the actual circles (optimal action) in the edge map. 

 

Classical Hough Transform methods for circle detection use three edge points to cast a vote for the 

potential circular shape in the parameter space. However, they require huge amounts of memory and 

longer computational times to obtain a sub-pixel resolution. Moreover, the exact parameter set for a 

detected circle after applying HT frequently does not match the quantized parameter set, rarely finding 

the exact parameter set for a circle in the image [28]. In our approach, the detected circles are directly 

obtained from Equations 3 to 6, still reaching a sub-pixel accuracy. 

 

In order to test the circle detection performance, speed and accuracy have been compared. A score 

function (see Equation (11)) has been proposed to measure the accuracy yielding an effective evaluation 

of the mismatch between a manually-determined and a machine-detected circle. Moreover, the 

experimental evidence has demonstrated that the LA method outperforms both the GA (as described in 

[12]) and the IRHT (as described in [7]) within a statistically significant framework. Table 2 also 

indicates that the LA method can yield better results on complicated and noisy images in comparison to 

the GA and the IRHT methods. However, this paper does not aim to beat all the circle detector methods 

proposed earlier, but to show that the LA algorithm can effectively serve as an attractive method to 

successfully extract multiple circular shapes. 
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                                       (a)                                                                                      (b) 

 
Figure 1. (a) The reinforcement learning system and (b) its parallel connected automata. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 2. Circle candidate (action) formed from the combination of points
1i

p ,
2i

p and
3i

p . 

 

 

 

 
                                 (a)                                                           (b)                                                          (c) 

 

Fig. 3. Environment reaction to an action iC : The image shown by (a) presents the original edge image while (b) 

portraits the virtual shape iS  corresponding to iC . The image in (c) shows coincidences between both images 

through blue or red pixels while the virtual shape is also depicted in green. 
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kmax   

/ 2cn  0.003 

Table 1. LA circle detector parameters 

 

    
 

(a) (b)  

 

 
(c) 

 

Fig. 4. Circle detection and the evolution of the probability density parameters. (a) Original image. (b) The detected 

circle is shown as an overlay, (c) parameter evolution yielding the probability density. 

 

 

 

 
 

Fig. 5. Circle detection on a natural image. Detected circle is shown as an overlay. 
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(a)                (b) 

 
Fig. 6. One sample synthetic image with a variety of shapes. (a) sample input (b) the detected circle.  

 

 

        
 
                                                (a)                                                                                 (b) 

 

Fig. 7. Natural image with a variety of shapes: (a) the original image with an overlay for the detected circle and (b) 

the corresponding edge map. 

 

 

          
  
                                               (a)                                                                                        (b) 

 
Fig. 8. Multiple circle detection on natural images: (a) the original image with an overlay of the detected circles and 

(b) edge image generated by the canny algorithm prior to be considered by the LA algorithm.  
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                                           (a)                                                                                             (b) 

  
                                            (c)                                                                                              (d) 

 
Fig. 9. Approximating several shapes by means of circle concatenation:  (a)-(c) original images, (b)-(d) their circle 

approximation. 

 

 

 

   
(a)      (b) 

 
Fig. 10. Circular approximation on real-life images: (a) the original image with the detected circles and (b) its edge 

map. 
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   (a)              (b) 

  
 
                                               (c)                                                                                        (d) 

 

Fig. 11. Occluded circles and arc detection: (a) Original synthetic image with two arcs, (b) its circle detection, (c) 

edge map of a natural occluded circle (the moon), (d) its detected circle as an overlay. 

 

 

 

  
(a)  (b) 

 
Fig. 12. Circle detection over images with added shapes (distracters) and noise: (a) original image with nine shapes, 

(b) detection of four circles (overlaid). 
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(a)   (b) 

 
Fig. 13. Circle detection on images containing different shapes (distracters): (a) Original image including six shapes, 

(b) Detection of three imperfect circles. 

 

 
 
 
 

 

Image 

 

Averaged execution time ± Standard 

deviation (s) 

 

 

Success rate (SR) (%) 

 

Averaged Es ± Standard deviation 

  

GA 

 

IRHT 

 

LA 

 

GA 

 

IRHT 

 

LA 

 

GA 

 

IRHT 

 

LA 

Synthetic images 

(a) 2.23±(0.41) 1.71±(0.51) 0.21±(0.22) 94 100 100 0.41±(0.044) 0.33±(0.052) 0.22±(0.033) 

(b) 3.15±(0.39) 2.80±(0.65) 0.36±(0.24) 81 95 98 0.51±(0.038) 0.37±(0.032) 0.26±(0.041) 

(c) 3.02±(0.63) 4.11±(0.71) 0.64±(0.19) 93 78 100 0.71±(0.036) 0.77±(0.044) 0.42±(0.011) 

Natural Images 

(a) 2.02±(0.32) 3.11±(0.41) 0.31±(0.12) 100 100 100 0.45±(0.051) 0.41±(0.029) 0.25±(0.037) 

(b) 2.11±(0.31) 3.04±(0.29) 0.57±(0.13) 100 92 100 0.87±(0.071) 0.71±(0.051) 0.54±(0.071) 

(c) 2.50±(0.39) 2.80±(0.17) 0.51±(0.11) 91 80 97 0.67±(0.081) 0.61±(0.048) 0.31±(0.015) 

 

 

 

Table 2. The averaged execution-time, the success rate and the averaged Es for the GA-based algorithm, the IRHT 

method and the proposed LA algorithm, considering six test images shown by Figures 14 and 15. 
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(a) (b) (c) 

Original images 

 

 

 

GA-based algorithm 

 

 

 

IRHT 

 

 

 

LA 

 

 

 

 

Fig. 14. Synthetic images and their detected circles for GA-based algorithm, the IRHT method and the proposed LA 

algorithm. 
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(a) (b) (c) 

Original images 

  

 

GA-based algorithm 

 

 

 

IRHT 

 

 

 

LA 

  

 

 
Fig. 15. Real-life images and their detected circles for GA-based algorithm, the IRHT method and the proposed LA 

algorithm. 

 


