Mobile Device Camera Connector (Tabiscope)

Circle Detection with Learning Automata (LA)

Paper Seminar by Kyle Wong

600.446 Computer Integrated Surgery II Project 7

> Partners: Daniel Ahn, Deepak Lingam Mentors: Dr. Amit Kochhar, Kevin Olds

Project Overview

• Design a low cost endoscopic adapter

Design Challenge

• Real-time image processing method for Circle Detection for auto-zoom, auto-focus, auto-brightness etc.

Paper Selection

Cuevas, E., Wario, F., Zaldivar, D., & Pérez-Cisneros, M. (2013). **Circle detection on images using learning automata**. In *Artificial Intelligence, Evolutionary Computing and Metaheuristics* (pp. 545-570). Springer Berlin Heidelberg

Cuevas '13. Circle detection on images using learning automata.

Summary of Problem and Results

- Circle detection quickly and accurately
- Create a set of synthetic and natural images for comparison
- Compare Learning Automata (LA) with Iterative Randomised Hough Transform (IRHT) and Genetic Algorithms (GA)

Cuevas '13. Circle detection on images using learning automata.

Significance

 LA algorithm works for occluded circles and multiple circles and is robust to noise and fast —>widespread use

Cuevas '13. Circle detection on images using learning automata.

Background - LA

- Learning Automata (LA) optimize through a learning process
- Model actions applied to an environment with a probability density function (pdf)
- Pair actions with reinforcement signal to update the pdf to select the next action
- Iterate until optimal action is found (threshold reached, or number of iterations is done)

Background - Preprocess

• pre-process with Canny Algorithm to get single-pixel edge map; take only a fraction (about 5%) randomly

Matlab - Canny Method

Random Sample

Background - Sample

• sample combinations of 3 points and check

Cuevas '13. Circle detection on images using learning automata.

Background 3 Circle-find

• Circle calculation

 $x_{0} = \frac{\det(A)}{4((x_{i_{2}} - x_{i_{1}})(y_{i_{3}} - y_{i_{1}}) - (x_{i_{3}} - x_{i})(y_{i_{2}} - y_{i_{1}}))}$ $y_{0} = \frac{\det(B)}{4((x_{i_{2}} - x_{i})(y_{i_{3}} - y_{i_{1}}) - (x_{i_{3}} - x_{i_{1}})(y_{i_{2}} - y_{i_{1}}))}$

$$\boldsymbol{A} = \begin{bmatrix} x_{i_2}^2 + y_{i_2}^2 - (x_{i_1}^2 + y_{i_1}^2) & 2(y_{i_1} - y_{i_1}) \\ x_{i_3}^2 + y_{i_3}^2 - (x_{i_1}^2 + y_{i_1}^2) & 2(y_{i_3} - y_{i_1}) \end{bmatrix}$$
$$\boldsymbol{B} = \begin{bmatrix} 2(x_{i_2} - x_{i_1}) & x_{i_2}^2 + y_{i_2}^2 - (x_{i_1}^2 + y_{i_1}^2) \\ 2(x_{i_3} - x_{i_1}) & x_{i_3}^2 + y_{i_3}^2 - (x_{i_1}^2 + y_{i_1}^2) \end{bmatrix}$$

$$r = \sqrt{(x_0 - x_d)^2 + (y_0 - y_d)^2}$$

Methods

• Synthetic images with noise

• Real life images

Cuevas '13. Circle detection on images using learning automata.

Methods - LA

• Synthetic images with noise

• Real life images

Cuevas '13. Circle detection on images using learning automata.

Results

Image	Averaged execution time ± standard deviation, s			Averaged $E_s \pm \text{standard deviation}$		
	GA	IRHT	LA	GA	IRHT	LA
Synthet	ic images					2
(a)	2.23 ± (0.41)	1.71 ± (0.51)	0.21 ± (0.22)	0.41 ± (0.044)	0.33 ± (0.052)	0.22 ± (0.033)
(b)	3.15 ± (0.39)	2.80 ± (0.65)	0.36 ± (0.24)	0.51 ± (0.038)	0.37 ± (0.032)	0.26 ± (0.041)
(c)	3.02 ± (0.63)	4.11 ± (0.71)	0.64 ± (0.19)	0.71 ± (0.036)	0.77 ± (0.044)	0.42 ± (0.011)
Natural	images					
(a)	$2.02 \pm (0.32)$	3.11 ± (0.41)	0.31 ± (0.12)	0.45 ± (0.051)	0.41 ± (0.029)	0.25 ± (0.037)
(b)	$2.11 \pm (0.31)$	$3.04 \pm (0.29)$	$0.57 \pm (0.13)$	0.87 ± (0.071)	0.71 ± (0.051)	0.54 ± (0.071)
(c)	2.50 ± (0.39)	2.80 ± (0.17)	0.51 ± (0.11)	0.67 ± (0.081)	0.61 ± (0.048)	0.31 <u>+</u> (0.015)

Cuevas '13. Circle detection on images using learning automata.

Results - LA Best

Image	Averaged execution time \pm standard deviation, s			Averaged $E_s \pm$ standard deviation		
	GA	IRHT	LA	GA	IRHT	LA
Synthet	ic images					
(a)	2.23 ± (0.41)	1.71 ± (0.51)	0.21 ± (0.22)	0.41 ± (0.044)	0.33 ± (0.052)	0.22 ± (0.033)
(b)	3.15 ± (0.39)	2.80 ± (0.65)	0.36 ± (0.24)	0.51 ± (0.038)	0.37 ± (0.032)	0.26 ± (0.041)
(c)	3.02 ± (0.63)	4.11 ± (0.71)	0.64 ± (0.19)	0.71 ± (0.036)	0.77 ± (0.044)	0.42 ± (0.011)
Natural	images					
(a)	2.02 ± (0.32)	3.11 ± (0.41)	0.31 ± (0.12)	0.45 ± (0.051)	0.41 ± (0.029)	0.25 ± (0.037)
(b)	2.11 ± (0.31)	3.04 ± (0.29)	0.57 ± (0.13)	0.87 ± (0.071)	0.71 ± (0.051)	0.54 ± (0.071)
(c)	2.50 ± (0.39)	2.80 ± (0.17)	0.51 <u>+</u> (0.11)	0.67 ± (0.081)	0.61 ± (0.048)	0.31 ± (0.015)

Cuevas '13. Circle detection on images using learning automata.

Assessment

Positive

• Thorough explanation and dataset results

Negative

• Self-constructed accuracy (arbitrary and biased?)

 $E_s = \eta(|x_{true} - x_D| + |y_{true} - y_D|) + \mu|r_{true} - r_D|$ $E_s = \text{Error score}$ $\eta = \text{weight for accuracy of the center (chosen 0.05)}$ $\mu = \text{weight for accuracy of the radius (chosen 0.1)}$

Future Work

- Compare to other methods like supposedly fast Randomized Circle Detection (accuracy and speed tradeoff)
- Compare to basic Circular Hough Transform (for a baseline)
- Implement in real-time to show capabilities (using real-time Canny edge detector)

Relevance to our Project

• Rapid and accurate circle detection in Endoscopic image

Conclusions

- Circle Detection and shape recognition are still being researched
- Speed, accuracy, memory use, and robustness are vital considerations
- Having a standard of measuring these is essential for benchmarking
 - Learning Automata for Circle Detection may be of use for our Endoscope application

Circle Detection with Learning Automata (LA)

- Questions and Feedback?

