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Abstract

Signal extrapolation is an important topic in image communication where it can be used for various prediction purposes
such as concealment of image data corrupted by transmission errors. This contribution outlines a method for extrapolating a
signal beyond a limited number of known samples. The known signal samples are approximated by a set of basis functions
which are defined over an area covering known as well as unknown samples. By minimizing a suitable error criterion and
successively selecting the most dominant basis functions, a non band-limited signal extrapolation can be obtained. It is shown
that this extrapolation can successfully be used for concealment of transmission errors in video communication as well as
elimination of defective pixels in X-ray imaging.
� 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

Extending a signal beyond a limited number of known
samples is commonly referred to as signal extrapolation.
In image and video communication, signal extrapolation is
an important issue in various applications. The problem of
concealing corrupted image data, for example, can be seen
as an extrapolation of the surrounding available image data
into the missing area. In image coding, spatial prediction
of a signal is applied in order to increase coding efficiency.
This prediction step can also be interpreted as extrapolation
of the known signal.
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Approaches for signal extrapolation by spectral analy-
sis are known from digital signal processing. The observed
time-limited signal can be modeled as a multiplication of
the unknown signal by a time-limited binary window func-
tion. In the frequency domain, the convolution of the un-
known signal spectrum with the window spectrum leads to
a blurred and spread spectrum of the observed signal. Our
objective is to eliminate the influence of the known window
spectrum by spectral analysis, thus extrapolating the signal
beyond the known samples.

Several iterative approaches are known for Fourier based
spectral analysis. The techniques in[1,2] treat the extrapo-
lation of time-windowed signals with known limited band-
width. The spectrum of the observed windowed signal is
first limited to the known band and then transformed to the
time domain, yielding a signal which is extrapolated beyond
the known samples. Band limitation, however, also alters the
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samples within the time window. After replacing the altered
samples by the known window-internal samples, the signal
is transformed again into the frequency domain, where band
limitation is enforced. The extrapolation is obtained by it-
erating this procedure. In[2] spectral components are addi-
tionally eliminated which are below an adaptive threshold.
However, because of the band limitation the signal decays
rapidly in the time domain beyond the known samples in the
extrapolated area. Therefore the approach is not suitable for
applications where the emphasis is placed on extrapolation
into larger areas.

In [3], an iterative extrapolation approach for region
oriented image analysis is described which in each step
selects the spectral component with largest magnitude. The
undesirable signal decay in the extrapolated area is avoided
due to signal expansion restricted to a small subset of dom-
inant spectral coefficients. As the previous approaches the
technique alternates in each iteration between signal and
frequency domain, and hence has a high computational
complexity. This repetitive transformation is avoided by the
proposal in[4,5] which, exploiting Parseval’s theorem, es-
timates the spectrum completely in the frequency domain.
Here the application is modelling the human sense of hear-
ing by a high resolution spectral analysis. In[5] some ex-
amples for a 2D generalization of this spectrum estimation
are given with application to image extrapolation.

Extrapolation may also occur as a by-product in object
based transform coding. In[6] the texture of an arbitrarily
shaped object is approximated successively and represented
by a linear combination of a few weighted suitable basis
functions defined over a circumscribing rectangle. Then the
texture is cut to the shape of the object by discarding the
extrapolated areas. This approach does not rely on the con-
volution theorem, and is thus applicable to transforms other
than the DFT, such as the DCT or DHT.

The same principle has been used in[7] for prediction of
uncovered background in object-based video coding using
spatial extrapolation. Here, the surrounding known back-
ground signal is successively approximated thereby yielding
a prediction for the uncovered area.

Error concealment is the extrapolation of data into the
missing area. Data losses can be caused in mobile video
communication by transmission errors. Depending on the
coding scheme, the transmission errors have different effects
on the received image. In case of block coding like JPEG,
errors cause block losses.

Wang et al.[8] assume that the image content is changing
smoothly. This standard approach tries to restore the transi-
tion across the block boundary as smoothly as possible. The
sequential method of[9] predicts each pixel from the avail-
able next neighbors. The lost block is reconstructed pixel
by pixel from eight directions and given by a weighted lin-
ear combination of these reconstructed blocks thus requiring
an extensive computational load. The extrapolation perfor-
mance of error concealment techniques[8–12] are mostly
heuristic and allow only the reconstruction of monotonous
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Fig. 1. The principle of extrapolation: the missing areaB (light
gray) is extrapolated from the approximated support areaA (dark
gray).

areas and edges. Moreover they allow only the satisfactory
concealment of small missing areas.

We seek to overcome these disadvantages by the con-
vincing extrapolation properties of the frequency selective
extrapolation algorithm derived in[6]. In Section 2 we in-
troduce a slightly generalized principle of this extrapolation
algorithm and then specify it for DFT basis functions. In
Section 3 we apply the extrapolation technique to the con-
cealment of erroneous image data, followed by some con-
clusions in Section 4.

2. Signal extrapolation

We consider the image regionL shown shaded inFig. 1.
Our aim is to estimate the missing signal samples in the area
B from the given signal samples in the support areaA by
extrapolation. The extrapolation principle works as follows:
the signal samples in the support areaA are approximated
by a weighted linear combination of basis functions which
are defined over the entire areaL. Therefore, each approx-
imation over the support areaA at the same time provides
an estimation of the missing samples inB. Note thatA as
well asB can be arbitrarily shaped, subject to the constraint
that their unionL forms a circumscribing rectangle.

In order to extrapolate data we take advantage of the ex-
trapolating properties of basis functions. In general periodic
functions are suited because they are able to extend the sig-
nal periodically. In contrast to this, functions of limited ex-
tent, such as polynomials or wavelets, are not suited because
they lack the extrapolation ability if the missing area be-
comes larger. Therefore, periodic functions like the DCT or
DFT are suited for the extrapolation of image signals. Us-
ing DFT basis functions is addressed in detail in Section
2.2. First, we will derive the general principle of the extrap-
olation algorithm with real valued signals and arbitrary real
valued basis functions.

2.1. Extrapolation principle

The values of the samples in the support areaA are de-
noted byf [m, n], wherem indicates the row andn the col-
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umn index. A parametric modelg[m, n] shall approximate
the signal within the support area by a linear combination
of basis functions�k,l[m, n] defined on the entire areaL
weighted by expansion coefficientsck,l

g[m, n] =
∑

(k,l)∈K
ck,l �k,l[m, n] (1)

with K denoting the set of basis functions used. The number
of available basis functions equals the number of samples
in the entire areaL.

In order to determine the expansion coefficients, we min-
imize a weighted error criterion between the original signal
and the parametric model evaluated with respect to the sup-
port area. The weighting functionw[m, n] has amplitudes
�[m, n] in the support area and is zero elsewhere

w[m, n] =
{

�[m, n], (m, n) ∈ A,

0, (m, n) ∈ B.
(2)

The following weighted error criterion is minimized dur-
ing the approximation with respect to the support area

EA =
∑

(m,n)∈L
w[m, n](f [m, n] − g[m, n])2. (3)

The weighting function allows us to emphasize subareas in
A which are closer to the missing samples and thus more
important for the extrapolation.

The weighted error criterion is minimized by taking the
derivative with respect to the unknown coefficients and set-
ting it to zero

�EA

�ck,l

= 0. (4)

However, this minimization procedure does not lead to a
unique solution because we have an underdetermined prob-
lem. The reason is that the number of basis functions equals
the number of samples inL which is larger than the number
of given signal samples inA. To overcome this problem, we
use the technique of successive approximation. This iterative
procedure approximates the signal within the support area
successively subject to an error energy constraint, leading
to two steps per iteration: First, a suitable basis function is
selected as described in Section 2.1.2. Secondly, the respec-
tive expansion coefficient is optimally estimated as derived
in Section 2.1.1. Hence, we describe the support area by a
few dominant features in terms of weighted basis functions.

2.1.1. Coefficient update
Let us assume that at any step� the parametric model

g(�)[m, n] approximating the signal in the support area is
available as

g(�)[m, n] =
∑

(k,l)∈K�

c
(�)
k,l �k,l[m, n] (5)

with K� denoting the set of basis functions used in this
step. In the beginning,K� will be empty for � = 0 and

the parametric modelg(0)[m, n] is zero. With the window
function

b[m, n] =
{

1, (m, n) ∈ A,

0, (m, n) ∈ B
(6)

we can express the residual error signal in the support area
(m, n) ∈ A at any iteration� by

r(�)[m, n] =
(
f [m, n] − g(�)[m, n]

)
· b[m, n]. (7)

The residual error in the support area is further approximated
by a weighted suitable basis function�u,v[m, n], leading to
the reduced error signal

r(�+1)[m, n] =
(
r(�)[m, n] − �c�u,v[m, n]

)
· b[m, n]. (8)

In order to obtain�c, the weighted residual error energy

E
(�+1)

A =
∑

(m,n)∈L
w[m, n]

(
r(�)[m, n]

−�c�u,v[m, n])2 (9)

is minimized with respect to�c which yields b[m, n]w
[m, n] = w[m, n]

�c =
∑

(m,n)∈L w[m, n]r(�)[m, n]�u,v[m, n]∑
(m,n)∈L w[m, n]�2

u,v[m, n] . (10)

The expansion coefficientc(�+1)
u,v is then updated by

c(�+1)
u,v = c(�)

u,v + �c (11)

and the index(u, v) is included in the set of used basis
functions

K�+1 = K� ∪ {u, v} if (u, v) /∈K�. (12)

2.1.2. Selection of suitable basis functions
The question not tackled so far is how to select a suit-

able basis function�u,v[m, n]. We seek to select that basis
function�u,v[m, n] which minimizes our specified error cri-
terion. Therefore, we calculate the weighted residual error
energy from iteration� to � + 1, taking into account that
the residuumr(�)[m, n] is orthogonal to the selected basis
function

∑
(m,n)∈L

w[m, n]
(
r(�+1)[m, n]

)2

=
∑

(m,n)∈L
w[m, n]

(
r(�)[m, n]

)2

−
∑

(m,n)∈L
w[m, n](�c�u,v[m, n])2. (13)
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More precisely, we select that basis function with index
(u, v) which results in a maximal decrease of the error cri-
terion. With help of Eq. (10) we obtain

�E
(�)
A = �c2

∑
(m,n)∈L

w[m, n](�u,v[m, n])2

=
(∑

(m,n)∈L w[m, n]r(�)[m, n]�u,v[m, n]
)2

∑
(m,n)∈L w[m, n](�u,v[m, n])2 (14)

and select the basis function according to

(u, v) = arg max
(k,l)

�E
(�)
A . (15)

Eq. (13) shows further, that convergence of the algorithm
is assured since the error energy is definitely reduced in each
step.

The algorithm is initialized by

g(0)[m, n] = 0 (16)

and terminates when the error energy reduction�E
(�)
A drops

below a prespecified threshold�Emin.
The successive approximation procedure results in a para-

metric modelg[m, n] given in the support areaA. Hence,
each approximation provides at the same time a signal ex-
trapolation in the entire areaL and the signal missing in
areaB is obtained by cutting it out of the parametric model.

The weighting function should emphasize regions which
are closer to the missing area and thus more important
for the extrapolation. Different weighting functionsw[m, n]
are specified for isolated and consecutive block losses in
Section 3.1.

2.2. Frequency selective extrapolation using 2D
DFT basis functions

It has already been mentioned that periodic basis func-
tions, such as those of the DCT and the DFT, are suited
for extrapolation of image signals. Two-dimensional DCT
basis functions contain only horizontal and vertical struc-
tures whereas the DFT has also diagonal basis images being
therefore better suited for the signal extrapolation[13].

In the following we will apply the principle of selective
extrapolation to the special case of two-dimensional DFT
basis functions.

2.2.1. Frequency selective extrapolation of 2D signals
Using two-dimensional DFT basis functions

�k,l[m, n] = ej2�/Mmkej2�/Nnl (17)

we obtain for the parametric model in iteration�

g(�)[m, n] = 1

MN

∑
(k,l)∈K�

c
(�)
k,l �k,l[m, n]

= 1

MN

∑
(k,l)∈K�

G(�)[k, l]ej2�/Mmkej2�/Nnl (18)

with M being the number of rows andN the number of
columns. Obviously, the expansion coefficient becomes the
DFT coefficient

c
(�)
k,l = G(�)[k, l]. (19)

For these complex basis functions, we minimize by

�EA

��c∗ = 0. (20)

We now derive some algorithmical simplifications. In Eqs.
(10) and (14) the termw[m, n] r(�)[m, n] appears. For the
sake of simplicity, we introduce the new variabler

(�)
w [m, n]

r(�)
w [m, n] = w[m, n]r(�)[m, n] (21)

and rewrite Eqs. (10) and (14) in case of using DFT basis
functions accordingly to

�c

= MN

∑
(m,n)∈L r

(�)
w [m, n]�∗

u,v[m, n]∑
(m,n)∈L w[m, n]�u,v[m, n]�∗

u,v[m, n] (22)

�E
(�)
A

=
(∑

(m,n)∈L r
(�)
w [m, n]�∗

u,v[m, n]
)2

(∑
(m,n)∈L w[m, n]�∗

u,v[m, n]�u,v[m, n]
)2

×
∑

(m,n)∈L
w[m, n]�2

u,v[m, n]. (23)

Thus, instead of insertingr(�)[m, n] and weighting it, we
already insert the weighted residual error. Subsequently, we
have to adapt Eq. (8) for the computation of the residual
error in the next iteration� + 1, too

w[m, n]r(�+1)[m, n] = r(�+1)
w [m, n]

= r(�)
w [m, n] − 1

MN

× �c�u,v[m, n]w[m, n].
The evaluation of the sums in Eqs. (22) and (23) is com-

putationally expensive. Using DFT basis functions allows us
to express all equations in the frequency domain enabling an
efficient implementation of the extrapolation algorithm. The
multiplication of the weighting function with the complex
exponential�u,v[m, n] is equivalent to a shift of its DFT by
u andv∑
(m,n)∈L

w[m, n]�u,v[m, n]�k,l[m, n]

= W ∗[k − u, l − v].
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Fig. 2. Flow graph explaining the extrapolation algorithm.

Hence we can express the coefficient update Eq. (22) in
the frequency domain as

�c = MN
R

(�)
w [u, v]
W [0, 0] (24)

as well as the energy decrease for the selection of the suitable
basis function

�E
(�)
A = R

(�)
w [k, l]2
W [0, 0] . (25)

Finally, the residual error signal according to Eq. (24) is

R(�+1)
w [k, l] = R(�)

w [k, l] − 1

MN
�cW [k − u, l − v]. (26)

The parametric model is obtained by an inverse DFT

g[m, n] = IDFTM,N {G[k, l]} (27)

and the missing data samples are cut out. Since all equations
are expressed in the frequency domain, there is only one
DFT transform required in the beginning and an inverse DFT
in the end.

The extrapolation algorithm is summarized by the flow
graph inFig. 2. The signal in the support area is approxi-
mated successively by computing one expansion coefficient
per iteration requiring the following two steps. First, that
basis function�u,v[m, n] is selected which maximizes the
decrease of the residual error energy. Then the respective co-
efficient c(�)

u,v is computed by minimizing the residual error
energy. Subsequently, the residual error signal in the support
area is computed and further approximated by the next co-
efficient. The iteration stops when the decrease of the resid-
ual error energy drops below a prespecified threshold. The
parametric model is then given in the entire area and the
missing samples are obtained by an inherent extrapolation.

2.2.2. Frequency selective extrapolation of image data
In the previous section we addressed the issue of extrap-

olating complex valued signals. Next, we turn to the extrap-

k

0
0

M
2

N − 1N
2

l

cu;v

cM− u;N− v

M−1

Fig. 3. Conjugate complex symmetry and search area for DFT
basis functions in case of real valued image signals.

olation of real valued image signals using 2D DFT basis
functions. For real valued signals the expansion coefficients
or DFT coefficients, respectively, fulfill the following con-
jugate complex symmetry:

c
(�)
M−k,N−l = c

(�)∗
k,l as well as, (28)

�M−k,N−l[m, n] = �∗
k,l[m, n] (29)

as illustrated inFig. 3.
To ensure that the approximation is a real valued signal,

we modify the equation for the parametric model to

g(�)[m, n] = 1

2MN

∑
(k,l)∈K�

(
c
(�)
k,l �k,l[m, n]

+c
(�)
M−k,N−l�M−k,N−l[m, n]

)
. (30)

Minimizing the weighted error criterion according to

�EA

��c
= 0 and

�EA

��c∗ = 0 (31)

we obtain for the update equation in the frequency domain

�c

=
{

MN R
(�)
w [u,v]
W [0,0] , (u, v) ∈ M

2MN R
(�)
w [u,v]W [0,0]−R

∗(�)
w [u,v]W [2u,2v]

W [0,0]2−|W [2u,2v]|2 , else
(32)

with

M =
{
(0, 0),

(
0,

N

2

)
,

(
M

2
, 0

)
,

(
M

2
,
N

2

)}
.

The case differentiation is necessary due to the definition
of the parametric model in Eq. (30) and Eqs. (28) and (29).
The expansion coefficients or DFT coefficients, can be up-
dated according to

c(�+1)
u,v = c(�)

u,v + �c (33)

c
(�+1)
M−u,N−v = c

(�)
M−u,N−v + �c∗. (34)
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The basis function with indexu, v is selected which max-
imizes

�E
(�)
A

=
{

2 R
(�)
w [k,l]2
W [0,0] , k, l ∈ M,

2 |R(�)
w [k,l]|2W [0,0]−Re{R(�)

w [k,l]2W ∗[2k,2l]}
W [0,0]2−|W [2k,2l]|2 , else.

(35)

However, due to the symmetry properties of the coefficients
in Eq. (28) the search area for finding a suitable function
can be limited to the half-plane inFig. 3.

The modified residual error used in the approximation is
given by

R(�+1)
w [k, l] = R(�)

w [k, l] − 1

2MN
(�cW [k − u, l − v]

+ �c∗W [k − (M − u), l − (N − v)]). (36)

In contrast to Section 2.2.1, we exploit spectral sym-
metries of real valued image signals in order to establish
the parametric model. Applying the computationally simpler
concept from Section 2.2.1 to image signals is also possi-
ble. In this case the algorithm alternatingly chooses the ba-
sis function�u,v[m, n] in iteration� and�M−u,N−v[m, n]
in � + 1. The coefficientsc(�)

u,v and c
(�+1)
M−u,N−v are updated

sequentially in iterations� and� + 1. However, the residual
error criterion has changed from iteration� to � + 1 so that
the coefficientsc(�)

u,v andc
(�+1)
M−u,N−v are not exactly conjugate

complex to each other and the model function in general will
be complex valued. By this, an artificial error is introduced
which is avoided by the modification in Section 2.2.2.

In [5] the multiplication of the window function and the
signal to be extrapolated is expressed as the convolution of
the window spectrum with the signal spectrum. The window
spectrum is then removed by selective spectral deconvolu-
tion. This in fact is equivalent to our approach when using
DFT basis functions and restrictingw[m, n] in the weighted
error criterion Eq. (3) to be binary valued.

3. Concealment of erroneous image data

As mentioned in the introduction error concealment of er-
roneous image data can be regarded as a problem of signal
extrapolation. In this section, we look at the concealment of
block losses and wavelet coefficients and the defect interpo-
lation in medical images using the proposed extrapolation
method. As already mentioned in Section 2, the weighting
function (2) should emphasize pixels which are more impor-
tant for the extrapolation over less important ones. There-
fore, we choose the isotropic model[14] for �[m, n]

�[m, n] = �̂

√
(m− M

2 )2+(n− N
2 )2; 0< �̂< 1 (37)

with �̂ being a prespecified constant. The influence of the
weighting function decreases radial symmetrically with dis-
tance from the center of the lost area at(M/2, N/2).

3.1. Block coded data

When transmitting images coded by block based tech-
niques over error prone channels like the internet or mobile
channels, the received images contain block losses in case
of transmission errors. We investigate both isolated and con-
secutive block losses. Consecutive losses occur in case of
spatial predictive coding and can be transformed into che-
querboard like error patterns by block interleaving at the
encoder which can be realized by the Flexible Macroblock
Ordering (FMO) technique in MPEG-4/AVC[15].

Since we consider a special application in the following,
we specify a model for the weighting function first.

The resulting weighting function depends also on the
available support area.Fig. 4 depicts on the top the result-
ing weighting function for a single block loss where all sur-
rounding blocks are available. In case of consecutive block
loss which is shown on the bottom, the block next to the
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Fig. 5. Concealment of block losses using the frequency selective extrapolation technique. Left: Isolated 16× 16 block losses. Right:
Concealed image.

missing one in raster scan order is not available. Further-
more, the previous block is an already extrapolated block
weighted by 0.1 in order to include it in the concealment
procedure but with limiting influence to avoid approxima-
tion error propagation.

To evaluate the ability of the algorithm to conceal errors,
images with simulated block loss patterns were tested. We
applied the usual macro block sizes of 16× 16 pixels and
investigated the images Lena, Peppers and Baboon contain-
ing isolated and consecutive losses.

The parameters are chosen based on the investigations
done in[14], where also PSNR results with respect to the
concealment techniques[8–12] are published. The support
area is 13 pixels in each direction. Hence, to the resulting
block of 42×42 pixels the next larger FFT size of 64×64 is
applied obtained by zero padding. The input parameter�̂ was
set to 0.74 for the weighting function. We ran the simulations
until either�EA drops below the threshold�Emin = 150
or a maximum number of 11 iterations is reached to limit
computational complexity.

Fig. 5 depicts on the left-hand side the image Lena with
16× 16 isolated losses and on the right-hand side its pro-
cessed version. Obviously, the algorithm is able to extrap-
olate monotonous areas such as those in the background as
well as edges of any direction like those along the hat. An
average of 7.2 iterations per block were needed for the lu-
minance component. In other words, approximately 7 DFT
coefficient pairs were on average sufficient to extrapolate
the missing area from the given support area.

Consecutive block losses are shown inFig. 6 on the left-
hand side for the image Baboon. Only parts of images are
shown due to the limited space. On the right-hand side the
processed image is displayed. Evidently, the algorithm ex-
trapolates additionally noise like areas like the fur or struc-
tures like the hairs of the beard. The average number of iter-
ations required increased slightly to 8.9 for the luminance.

Generally, in the first iteration the DC component cor-
responding to the color of the missing block is calculated.

Fig. 6. Concealment of block losses using the frequency selective
extrapolation technique. Left: Consecutive 16× 16 block losses.
Right: Image with errors concealed.

Then, depending on the image content, the coefficients cor-
responding to higher frequencies are refined step by step.

A suitable weighting function improves the extrapolation
results significantly. In case of concealment, the isotropic
weighting function gains severable dBs in PSNR[14] with
respect to a binary weighting function used in[13]. The
concealment performance decreases if there are details in
the support area which do not belong to the missing area.
But the image content changes with increasing distance what
the decaying weighting function accounts for. Further, the
diagonals were overrepresented using the rectangular binary
weighting function.
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Fig. 7. Concealment of four packet losses in the lowpass band.
Left: Lowpass with errors concealed. Right: Reconstructed image
with errors concealed.

3.2. Wavelet coded data

The JPEG2000 coder as an example for a wavelet based
image coder organizes wavelet coefficients in packets where
a packet cannot exceed the resolution level. In case of trans-
mission errors, the visual distortions caused by a packet loss
and the related loss of wavelet coefficients are concealed
by extrapolating the surrounding correctly received wavelet
coefficients in the subband[16].

Fig. 7 demonstrates the concealment of wavelet coeffi-
cients. Four packet losses where applied to the lowpass sig-
nal. On the left-hand side, the concealed lowpass signal by
extrapolating the lost wavelet coefficients from the surround-
ing coefficients is depicted using a weighting according to
Eq. (37) with�̂ = 0.45 and maximally 4 iterations. The re-
constructed image with errors concealed is shown on the
right-hand side.

3.3. Defect interpolation in digital radiography

Another error concealment problem arises in clinical X-
ray imaging with the advent of large-area flat panel detec-
tor systems[17,18]. Such a detector system is manufactured
from amorphous silicon (a-Si), and consists of a large ma-
trix – up to 40× 40 cm2 – of light sensitive pixels, which
is made sensitive to X radiation by a coating of scintillat-
ing material. Practically, however, the current generation of
these detectors contains lines and clusters of inactive pixels
[18, p. 287], the sites of which are known from calibration
measurements. Such defects can be interpolated from neigh-
boring data by median filtering[18] or orientation-adaptive
linear interpolation[19]. The down-side of these spatial ap-
proaches is that they are limited to defects of rather small
spatial extent, and that the (quantum) noise structure in the
interpolated defects may look somewhat unnatural. As an
alternative, we have therefore applied the above spectral ap-
proach to radiographies with synthetically generated defects
[20,21]. Fig. 8shows on the left-hand side a part of a radio-
graph with synthetic defects. (To test the ability of our algo-
rithm to cope with even large-area defects, these defects are

Fig. 8. Concealment of synthetically generated defective pixel
sites. Left: Part of size 264× 282 pixels of a digital radiograph
with defects. Right: Image with concealed defects.

grossly exaggerated.) The processed version is shown on the
right-hand side ofFig. 8. Processing was based on the DFT
applied to blocks of size 64× 64 pixels. All known pixels
within this support were weighted equally, i.e. no weight-
ing as in Eq. (37) was used. The price to pay was that, in
order to achieve good extrapolation results, the number of
iterations had to be considerably increased. Also, the spec-
tral resolution had to be doubled in each dimension by ap-
propriate zero-padding of the signal before entering into the
iteration. Details can be found in[20,21].

4. Conclusions

We presented a method for signal extrapolation. Conceal-
ment of erroneous image data can be seen as an extrapolation
problem where we applied the developed algorithm success-
fully. Using DFT basis functions, the algorithm extrapolates
fairly large missing areas by spectral analysis of a given
support area. Besides, the technique is able to extend con-
sistently signals with different properties like monotonous
areas, edges as well as noise like areas. The complexity de-
pends on the signal properties, monotonous areas require
only one iteration and detailed areas more.

Future work will include the application of the promising
approach to other extrapolation problems in image and video
communication like intraframe prediction in video coding
or image inpainting for unobtrusive removal of bothering
image details such as video logos.
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