
DICOM in Dart (DCMiD)
Project 13

Damish Shah Danielle Tinio

Mentor: Dr. James Philbin

Topic and Goal

Determine the feasibility of using binary DICOM for
building browser based medical imaging applications

Method:

• Design and implement a DICOM editor that reads and writes
binary DICOM and displays it using HTML5, CSS3 and the Dart
programming language.

• Test performance by reading, displaying and writing DICOM
studies in binary format.

• Goal: Read and display imaging studies in less than 3 seconds.

Dependencies

Access to our mentor

Computer to write code

Bitbucket to share code

Dart & DICOM Reference Information

Access to DICOM Test Data

DICOM Review

Dataset

Attributes

Sequence

Items

list of

can be

list of

each item contains
other datatypes
Ex/ stringList, decimalList,
Bulkdata Reference

• define members whose body returns a single expression
• bobLikes() => isDeepFried || (hasPieCrust && !vegan);

• ‘?’ can be used in place of “if-else” statements
• a = condition ? b: c

• Function expressions
• var names = people.map((person) => person.name);

• Underscores for private methods and variables
• int _test;

• Getters and setters
• int get test => this._test;

• void set test (int value) {
this._test = value;

}

* Example code from https://www.dartlang.org/articles/style-guide/

Work To Date

• Our parsing and writing is functional
• Binary parsers
• String parsers
• Data structure
• Created classes

• DateTime to override Dart’s DateTime class
• Needed to write more accurate time

• Write Output

• Validating parsers with testing

• Developing the basic skeleton of UI for end-point
user

Example code

• Binary data is being stored as ByteData in our ByteBuffer
class

• Bytedata has a lot of built in functions for binary data types,
int in general

• int getInt8
• Int getUint32

int readUint8() {

var val = _bd.getUint8(_chkRdIdx(_rdIdx));

_rdIdx += _int8Size;

return val;

}

* Example code from our bytebuf.dart class
*_bd is the internal ByteData representation of our binary data.

Future
• Give values when it becomes available

• Do not have to parse in time with everything else

• Asynchronous model for functions doing potentially
expensive work

static readFile(File file) {

Future handler = file.readAsBytes();

handler.then((Uint8List bytes) {

return new ByteBuf.fromBytes(bytes);

});

}

*Example code from our bytebuf.dart class:

Problems
• Updating our code outline as we learn more about Dart

• We have found better ways to structure our code and have
been forced to redo pieces of it.

• Parsers have not been affected, but how we handle input and
the underlying data structure has had to be rewritten.

• As a result, the tests have to be updated as the methods are
reorganized and optimized

• Complete validation of output can be formally done once the parsers are
finalized using unit tests

void main() {

test('Addition test', () {

expect(2 + 2 == 4, isTrue);

});

}

4 PASSED, 1 FAILED, 0 ERRORS

What we plan to do

• To continue toward our maximum deliverables, we
chose to split the upcoming tasks

• Optimize parsers (Damish)

• Validate the most recent version of code (Both)

• Finish the user interface (Danielle)

• Continue our current frequency of meetings
• Monday and Thursday at 9:30 with our mentor

• Sunday, Monday, Wednesday, Friday at 10:00 as a team

Deliverables
• Minimum deliverables (March 20) → (April 5)

 Read and display DICOM in a browser and then write it
• Build a test program that compares input and output to validate

correctness (in progress)
• Create unit tests for each class (in progress)

• Expected deliverables (April 3) → (April 8)
• Display a work list of studies of n patients (in progress)
• Display patient as collapse/expand tree for study information model (in

progress)

• Maximum deliverables (May 1)
• Display images
• Add overlay information (abandoned due to time)
• Edit metadata
• Encrypt and decrypt studies using AES (GCM) using an encryption

framework created at Hopkins Security Institute → (Summer 2014)

Updated Project Plan

• February 20: Have project proposal finished and all of the programming
planned and reviewed by Dr. Philbin

• March 6: Read input (parse)

• March 20 → April 5: Write and validate output

• April 3 → April 8: HTML5/CSS3 display metadata

• May 1: Display images

• May 9: Final Poster Presentation

Feb Mar Apr May

20 27 6 13 20 27 3 4 5 6 7 8 9 10 17 24 1 9

Project Proposal

Read input (parse)

Validate output

Display metadata in browser

Display images

Final Presentation

Questions?

