JOHNS HOPKINS cllIS

WHITING SCHOOL
af ENGINEERING

DICOM in Dart (DCMID)

Project 13
Damish Shah Danielle Tinio

Mentor: Dr. James Philbin

Topic and Goal

Determine the feasibility of using binary DICOM for
building browser based medical imaging applications

Method:

* Design and implement a DICOM editor that reads and writes
binary DICOM and displays it using HTML5, CSS3 and the Dart
programming language.

* Test performance by reading, displaying and writing DICOM
studies in binary format.

* Goal: Read and display imaging studies in less than 3 seconds.

T ————

§"DICOM e@part

Digital Imaging and Communications in Medicine

Dependencies

Access to our mentor

Computer to write code

Bitbucket to share code

Dart & DICOM Reference Information
Access to DICOM Test Data

DICOM Review

Dataset
l list of

other datatypes <« Attﬂ bUteS

Ex/ stringList, decimallList,
Bulkdata Reference l can be

each item contains

Sequence
l list of

ltems

@& Dart

define members whose body returns a single expression
* boblLikes() => isDeepFried || (hasPieCrust && !vegan);

?’ can be used in place of “if-else” statements
 a=condition?b:c

Function expressions
* var names = people.map((person) => person.name);

Underscores for private methods and variables
* int_test;

Getters and setters
* int get test => this._test;

* void set test (int value) {
this._test = value;

* Example code from https://www.dartlang.org/articles/style-guide/

Work To Date

e Qur parsing and writing is functional
* Binary parsers
* String parsers
* Data structure

 Created classes

e DateTime to override Dart’s DateTime class
* Needed to write more accurate time

* Write Output
* Validating parsers with testing

* Developing the basic skeleton of Ul for end-point
user

Example code

. Blinary data is being stored as ByteData in our ByteBuffer
class

e Bytedata has a lot of built in functions for binary data types,
int in general
* int getInt8
* Int getUint32

int readUint8 () {
var val = bd.getUint8 (chkRdIdx(rdIdx));
_rdIdx += 1int8Size;
return val;

* Example code from our bytebuf.dart class
* bd is the internal ByteData representation of our binary data.

Future

* Give values when it becomes available
* Do not have to parse in time with everything else

* Asynchronous model for functions doing potentially
expensive work

static readFile(File file) {
Future handler = file.readAsBytes();
handler.then ((Uint8List bytes) {
return new ByteBuf.fromBytes (bytes);

}) s

*Example code from our bytebuf.dart class:

Problems

Updating our code outline as we learn more about Dart

We have found better ways to structure our code and have
been forced to redo pieces of it.

Parsers have not been affected, but how we handle input and
the underlying data structure has had to be rewritten.

As a result, the tests have to be updated as the methods are
reorganized and optimized

* Complete validation of output can be formally done once the parsers are
finalized using unit tests

void main () {

test ('Addition test', () {
expect (2 + 2 == 4, 1isTrue);
1D

4 PASSED, 1 FAILED, 0 ERRORS

What we plan to do

* To continue toward our maximum deliverables, we
chose to split the upcoming tasks
* Optimize parsers (Damish)
 Validate the most recent version of code (Both)
* Finish the user interface (Danielle)

* Continue our current frequency of meetings
* Monday and Thursday at 9:30 with our mentor
* Sunday, Monday, Wednesday, Friday at 10:00 as a team

Deliverables

* Minimum deliverables (March 20) — (April 5)

v Read and display DICOM in a browser and then write it

* Build a test program that compares input and output to validate
correctness (in progress)

* Create unit tests for each class (in progress)

 Expected deliverables (April 3) — (April 8)
* Display a work list of studies of n patients (in progress)

» Display patient as collapse/expand tree for study information model (in
progress)

* Maximum deliverables (May 1)
* Display images
+—Add-everlay-inrformation-(abandoned due to time)
* Edit metadata

* Encrypt and decrypt studies using AES (GCM) using an encryption
framework created at Hopkins Security Institute — (Summer 2014)

Updated Project Plan

* February 20: Have project proposal finished and all of the programming
planned and reviewed by Dr. Philbin

e March 6: Read input (parse)

* March 20 — April 5: Write and validate output

* April 3 — April 8: HTML5/CSS3 display metadata
* May 1: Display images

* May 9: Final Poster Presentation

Feb Mar Apr May

20 27/ 6 13 20 27345678910517 24/ 1 9
Project Proposal '

Read input (parse)

Validate output
Display metadata in browser
Display images

Final Presentation

Questions?

