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Abstract Today, most medical images are stored as a set of
single-frame composite Digital Imaging and Communica-
tions in Medicine (DICOM) objects that contain the four
levels of the DICOM information model—patient, study,
series, and instance. Although DICOM addresses most of
the issues related to medical image archiving, it has some
limitations. Replicating the header information with each
DICOM object increases the study size and the parsing
overhead. Multi-frame DICOM (MFD) was developed to
address this, among other issues. The MFD combines all
DICOM objects belonging to a series into a single DICOM
object. Hence, the series-level attributes are normalized, and
the amount of header data repetition is reduced. In this
paper, multi-series DICOM (MSD) is introduced as a po-
tential extension to the DICOM standard that allows faster
parsing, transmission, and storage of studies. MSD extends
the MFD de-duplication of series-level attributes to study-
level attributes. A single DICOM object that stores the
whole study is proposed. An efficient algorithm, called the
one-pass de-duplication algorithm, was developed to find
and eliminate the replicated data elements within the study.
A group of experiments were done that evaluate MSD and
the one-pass de-duplication algorithm performance. The

experiments show that MSD significantly reduces the
amount of data repetition and decreases the time required
to read and parse DICOM studies. MSD is one possible
solution that addresses the DICOM limitations regarding
header information repetition.
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Introduction

The Digital Imaging and Communications in Medicine
(DICOM) [1] information model arranges the data in four
levels: patient, study, series, and instance. Each medical
image is stored as a DICOM composite object that contains
the four levels of the information model as data elements.
While the DICOM standard has enabled strong interopera-
bility between medical imaging devices and applications, it
does have some areas where it can be improved. In partic-
ular, DICOM communication is still primarily based on
single-frame composite objects, in which the patient, study,
and series information is replicated in each object. These
composite objects are transmitted one object at a time. In
addition to duplication, this repetition necessitates parsing
and validating the data each time it is transmitted. In
typical implementations, which use composite objects,
the sending and the receiving application entities have
to handshake for each transmitted object. Hence, the time
required to transmit the data between different applica-
tion entities is increased. As the number and size of
medical imaging studies continue to increase, finding a
solution for these inefficiencies is becoming increasingly
important. It should be noted that multi-frame DICOM
(MFD) objects are improving this situation by allowing
an entire series to be sent as one object; however, there
are two problems with the current MFD format: (1)
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many vendors have not implemented it, and (2) there
is no standard way to convert older studies into these
objects.1

In this paper, a multi-series DICOM (MSD) object is
proposed as a study-level extension of the MFD object.
The MFD format stores multiple frames within the same
series in one DICOM object in contrast to the DICOM
composite object that stores only a single frame. The
proposed format stores the whole study in a single
MSD object, where each series is potentially a MFD
object. The patient, study, and series attributes are stored
only once, thus eliminating the repetition of the metadata
that occurs with single-frame DICOM objects. In addi-
tion, a new algorithm called the one-pass de-duplication
algorithm was developed that finds and eliminates the
repeated attributes within the traditional single-frame
objects. The algorithm eliminates duplicate data elements
by allocating them to their appropriate level in the infor-
mation model. Multiple DICOM studies were used to test
the proposed methods. For the test studies, on average,
MSD results in metadata that have six times fewer data
elements and five times fewer bytes compared to the
original single-frame DICOM (SFD). This reduction in
the number of data elements results in about 30 % re-
duction in the time required for reading and parsing the
study. Finally, a performance analysis of the one-pass
normalization algorithm shows that the process does
not add any overhead to the time required to read

DICOM studies. This is because the time needed for de-
duplication is offset by the cost reduction of not storing
duplicate data elements.

Materials and Methods

DICOM supports a nested dataset capability. It is possible to
define a sequence element that contains sets of elements. A
data element is a sequence data element if its VR value equals
to SQ. MFD objects use this capability to store multiple
frames belonging to the same series in a single object. The
sequence element used to store the frameswithin the series has
a special tag, called the PerFrameFunctionalGroupsSequence

1 Note: DICOM Work Group 6 currently has an ad hoc committee that
is trying to create relaxed multi-frame objects that will allow older CT,
MR, and PET studies to be converted to series-level objects that reduce
duplication and improve transmission time.

Fig. 1 Study data model

Fig. 2 Adding an instance to a study with an attribute that already
exists in the study-level attributes but with a different value field. The
input instance belongs to a new series
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tag. This sequence element holds the frame objects. This work
extends this idea to the study level and allows storing a whole
study in a single MSD object. In order to do this, we introduce
a new private tag, called the PerSeriesFunctionalGroupsSe-
quence tag. The proposed MSD object has a special sequence
data element with the PerSeriesFunctionalGroupsSequence
tag that holds a set of objects where each object represents a
different series. Each object representing a series can be a
MFD object if the series has more than one frame.

The arrangement of pixel data within the MFD and
the MSD objects is important. The MFD objects con-
catenate the pixel data of all frames within the series
and store it in a single-pixel data element. This format
requires all frames within the series to have the same
size. If a series has frames with different sizes, it cannot
be stored in MFD format. In this paper, this issue was
addressed using two different approaches. The first ap-
proach stores the whole series as one DICOM object. It
stores the pixel data of each frame as a pixel data
element within the frame's object, which is stored in
the PerFrameFunctionalGroupsSequence data element.
The second approach creates a MFD object for each
possible frame size. Each such object contains a data

element with the concatenated pixel data for the frames
of that size. The later solution is similar to the MFD
standard style of arranging pixel data within a DICOM
object, but it creates separate objects for each possible
frame size.

An application programming interface (API) was devel-
oped to support the MSD object. The API was developed
in Java. The implementation was created using the
dcm4che2 [http://www.dcm4che.org/confluence/display/
d2/dcm4che2+DICOM+Toolkit (accessed January 2012)]
toolkit, which is used for reading/writing the DICOM files,
as well as parsing and storing the data elements. The API
contains a study model that stores the data elements. The
study model corresponds to the DICOM information mod-
el, i.e., patient, study, series, and instance. In addition, the
API includes the de-duplication algorithm that was devel-
oped to eliminate duplicate data elements in the study
attributes. Finally, the API has an input/output package
that reads SFD, MFD, and MSD formats into the study
model and allows SFD, MFD, or MSD formats to be
written from the study model. The following sections brief-
ly describe the study model, the de-duplication algorithm, and
the input/output package.

Fig. 3 Adding an instance to a
study with an attribute that
already exists in the study-level
attributes but with a different
value field. The input instance
belongs to a series that has
some other instances

Fig. 4 Adding an instance to a
series with an attribute that
already exists in the series-level
attributes but with a different
value field
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Study Model

The study model has the same levels of information as the
DICOM information model, i.e., study, series, and instance
classes. A study object and a binary file represent the
DICOM study. The study object is composed of the study-
level attributes that are shared among all series and a list of
series objects. Each series object is composed of the series-
level attributes that are shared among all instances and a list
of instances objects. Each instance is composed of the
instance-level attributes. The pixel data and other large size
attributes (larger than 256 bytes) are stored in the binary file
to reduce the memory consumption. The binary file is ac-
cessible through the study object; see Fig. 1.

The One-Pass De-duplication Algorithm

The one-pass de-duplication algorithm constructs the study
model described in the previous section. The algorithm finds
duplicate attributes within the input study service–object
pair (SOP) instances and ensures that the constructed study
model is free of repetition. The algorithm depends on
the order of the element tags. The DICOM standard
requires that all data elements within a SOP instance
to be sorted in ascending order according to their tag
numbers. The algorithm keeps the study-level elements and
series-level elements in order, which enhances performance as
illustrated below.

The data elements in the first input DICOM SOP
instance are added to the study-level attributes except

for the seriesInstanceUID and SOPInstanceUID, which
are added to the series-level and instance-level attributes,
respectively. For subsequent instances, the algorithm
starts with study-level normalization followed by series-
level normalization if required.

In study-level normalization, the algorithm compares the
tag number of the attribute at index inputIndex in the input
instance with the tag number of the attribute at studyIndex in
the list of study-level attributes. Initially, inputIndex and
studyIndex have a value of zero. If the tag numbers are
equal and the attribute values are identical, the input attri-
bute is discarded. Both the inputIndex and studyIndex are
incremented by one. If the tag numbers are equal but the
attributes values are different, the study-level attribute is
removed from the list of study-level attributes and added
to the list of series-level attributes of all the other series
within the study except the series that the input instance
belongs to. If the input instance belongs to a new series, the
input attribute is added to the list of the series-level attrib-
utes of the new series; see Fig. 2.

If the input instance belongs to a series that has other
instances in it, the input attribute is added to the list of
instance-level attribute of the input instance, and the study-
level attribute is added to the list of instance-level attributes
of each other instance within that series; see Fig. 3. In both
cases, the inputIndex and studyIndex are incremented
by one.

If the tag number of the input attribute is greater than the
tag number of the study attribute, this implies that the study
has a data element that does not exist in the new DICOM
SOP instance. Based on this, the attribute is removed from
the list of study-level attributes and added to the list of
series-level attributes of each series within the study except
for the series that the input SOP instance belongs to. If there
is only one series, the attribute is added to the list of
instance-level attributes of all instances within the series
except for the instance that corresponds to the input SOP
instance. Finally, the studyIndex is incremented by one.

If the tag number of the input attribute is smaller than the
tag number of the study attribute, this implies that the list of
study-level attributes does not have an attribute with the
same tag. In this case, series-level normalization is applied.

Fig. 5 Conversion of SFD, MFD, and MSD formats to/from the study
model

Table 1 Input data sets
properties Study name No. of series No. of frames Study size (KB) Binary size (KB) Header size (KB)

SMALLMR 9 277 72,457 71,488 969

SMALLCT 5 338 174,008 173,088 920

TESTMR 17 1,116 217,630 213,352 4,278

TESTCT 7 1,018 617,236 613,926 3,310

TESTCTA 13 2,524 1,374,373 1,366,321 8,052

BREASTMR 22 2,362 1,508,194 1,499,589 8,605

Average 12 1,273 660,650 656,294 4,356
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Series-level normalization compares the input attribute with
the series-level attribute at index seriesIndex. Initially,
seriesIndex is zero.

If the tag numbers are equal and the attributes values are
identical, the input DICOM attribute is discarded. Both the
inputIndex and seriesIndex are incremented by one. If the
tag numbers are equal and the attributes' values are different,
the input attribute is added to its instance list of instance-
level attributes while the series-level attribute is removed
from the list of series-level attributes and added to each
other instance within the series. Both the inputIndex and
seriesIndex are incremented by one; see Fig. 4.

If the tag number of the input attribute is greater than the
tag number of the series attribute, then the series has a data
element that does not exist in the new SOP instance. Based
on this, the series-level attribute is removed from the series-
level attributes and added to each other instance within the
series except for the series that the input object belongs to.
The seriesIndex is incremented by one.

If the tag number of the input data element is smaller than
the tag number of the series attribute at index seriesIndex,
then the list of series-level attributes does not have an
attribute with the same tag. The input data element is added
to the list of instance-level attributes of its instance, and the
inputIndex is incremented by one. The process continues

until the inputIndex exceeds the number of attributes in the
input SOP instance. This indicates the end of the input SOP
instance. The algorithm repeats the same process for each
SOP instance within the study.

The Input/Output Package

The input/output (I/O) package supports reading and writing
the study model to SFD, MFD, or MSD file formats, see
Fig. 5. The output process is simple. For SFD output, each
instance in the study model is converted to a DICOM object.
The study-level attributes and series-level attributes are
added to each SFD object created. For MFD, each series is
converted to a DICOM object. The study-level attributes are
added to each MFD object created. Each MFD object con-
tains an attribute with PerFrameFunctionalGroupsSequence
tag. Instances within the series are converted to DICOM
objects stored within PerFrameFunctionalGroupsSequence
attribute. Finally, the MSD format stores the whole study in
one object where each series is stored as a DICOM object
stored in the PerSeriesFunctionalGroupsSequence attribute
as described previously.

A suite of integration tests is used in the development
process to validate the conversion process. The tests read
studies in SFD, MFD, and SFD formats and output studies

Table 2 Number of DICOM attributes for the DICOM datasets listed
in Table 1 stored in different formats. The second column is for SFD
format, and the third and fifth are for the MFD and MSD in V1 format.
The seventh and ninth columns are for the MFD and MSD in version 2

format. The seventh and ninth columns are for the MFD and MSD in
version 2 format. Columns 4 and 8 show the percentages of MFD to
SFD while columns 6 and 10 show the percentage of MSD to MFD

Study name SFD MFD (V1) Percent MSD (V1) Percent MFD (V2) Percent MSD (V2) Percent

SMALLMR 31,241 3,391 11 % 2,695 9 % 3,659 12 % 2,963 9 %

SMALLCT 28,777 3,753 13 % 3,575 12 % 4,086 14 % 3,908 14 %

TESTMR 129,705 12,231 9 % 11,049 9 % 13,330 10 % 12,148 9 %

TESTCT 105,540 35,429 34 % 27,972 27 % 36,235 34 % 28,778 27 %

TESTCTA 269,665 86,488 32 % 71,303 26 % 88,526 33 % 73,341 27 %

BREASTMR 268,149 27,955 10 % 26,380 10 % 30,295 11 % 28,720 11 %

Average 138,846 28,208 18 % 23,829 15 % 29,355 19 % 24,976 16 %

Table 3 Metadata size of the DICOM datasets listed in Table 1 stored
in different formats. The second column is for SFD format, and the
third and fifth are for the MFD and MSD in V1 format. The seventh

and ninth columns are for the MFD and MSD in version 2 format.
Columns 4 and 8 show the percentages of MFD to SFD while columns
6 and 10 show the percentage of MSD to MFD

Study name SFD MFD (V1) Percent MSD (V1) Percent MFD (V2) Percent MSD (V2) Percent

SMALLMR 969 156 16 % 139 14 % 158 16 % 141 15 %

SMALLCT 920 171 19 % 166 18 % 174 19 % 169 18 %

TESTMR 4,278 585 14 % 550 13 % 594 14 % 559 13 %

TESTCT 3,310 1,193 36 % 890 27 % 1,193 36 % 896 27 %

TESTCTA 8,052 2,829 35 % 2,201 27 % 2,845 35 % 2,217 28 %

BREASTMR 8,605 1,267 15 % 1,224 14 % 1,285 15 % 1,242 14 %

Average 4,356 1,034 22 % 875 19 % 1,041 23 % 875 19 %
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in all three file formats. These tests verify that the input
study is identical to the output study.

Results

A number of experiments were done to test our proposed
MSD object compared to the single-frame DICOM and
MFD objects in addition to experiments that evaluate the
one-pass de-duplication algorithm performance. For each of
the experiments described below, the experiment was run
ten times. The outlier runs were thrown away, and the
average of the remaining consistent runs was reported. Six
different input single-frame DICOM studies were used for
our experiments. The size of the input studies ranges be-
tween 72 MB and 1.4 GB. For a complete description of the
input data set, see Table 1.

The first experiment was designed to measure the reduc-
tion in the number of data elements and consequently the
total size of the metadata after de-duplication. The input
studies were saved to a secondary storage device using three
different formats, SFD, MFD, and the proposed MSD for-
mat. Each of the MFD and MSD formats has two different
versions, the first version (V1) with a single-pixel data
element per frame size per series and the second version
(V2) with a single-pixel data element per frame in the series
regardless of its size. Table 2 compares the number of data
elements while Table 3 shows the size of the metadata for
each format.

The second experiment shows the relationship between
the metadata size and the time required to read and parse the
DICOM study. In this experiment, the time required to read
and load each study stored in the formats described above
was measured. For this experiment, the time required to
construct the dcm4che2 DICOM objects was recorded.
Dcm4che2 was chosen to achieve a fair comparison inde-
pendent of the normalization process. The results of this
experiment are presented in Table 4. Finally, the perfor-
mance of the normalization algorithm was evaluated. Table 5

contains the time required to build the study model de-
scribed in the “Materials and Methods” section with and
without normalization. The experiments were done using a
quad core 2.27-GHz machine with 48 GB of memory and
8 GB allocated heap memory.

Discussion

The results in Tables 2 and 3 show a significant reduction in
the number of data elements and size of metadata for the
MFD and MSD formats compared to the single-frame
DICOM. The average number of data elements and average
size of the metadata of the MFD v1 formats went down to
18 and 22 % of its original values in the SFD format. The
average ratio of the number of data elements and metadata
size between the MSD v1 format and the SFD v1 format is
15 and 19 %, respectively. There is no significant difference
between the two versions of MSD and MFD formats in
terms of the number of data elements and metadata size.
The size of a study in a MFD or MSD format with one
pixel data element per series is less than its size in the

Table 4 Time in milliseconds required for reading DICOM studies
stored in different formats. The second column is for SFD format, and
the third and fifth are for the MFD and MSD in V1 format. The seventh

and ninth columns are for the MFD and MSD in version 2 format. The
percentage columns show the read time with respect to the read time of
SFD format

Study name SFD MFD (V1) Percent MSD (V1) Percent MFD (V2) Percent MSD (V2) Percent

SMALLMR 261.6 187 71 % 175 67 % 165.0 63 % 156.9 60 %

SMALLCT 361.0 466 129 % 460.9 128 % 274.6 76 % 266 74 %

TESTMR 615.2 403 66 % 377.5 61 % 336.5 55 % 336 55 %

TESTCT 985.8 1,437 146 % 1,355.7 138 % 798.0 81 % 743.818 75 %

TESTCTA 2,069.6 2,949 142 % 3,118.8 151 % 1,685.8 81 % 1,391.82 67 %

BREASTMR 2,163.8 4,109 190 % 4,415 204 % 1,614.4 75 % 1,626.7 75 %

Average 1,076 1,592 124 % 1,650.48 125 % 812 72 % 753.5 68 %

Table 5 Performance in milliseconds of the one-pass normalization
algorithm. The first column is the time required to construct the study
model without normalization. The second is the time required for
constructing the study model with normalization using the one-pass
normalization algorithm. The last two columns show the speedup in
milliseconds and as a percentage

Study name Without de-
duplication

With de-
duplication

Speedup
(ms)

Speedup
%

SMALLMR 556 487 69 12 %

SMALLCT 858 764 94 11 %

TESTMR 1,270 1,199 71 6 %

TESTCT 2,428 2,310 118 5 %

TESTCTA 5,114 4,600 514 10 %

BREASTMR 5,592 5,040 552 10 %

Average 2,636 2,400 236 9 %
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corresponding format with a pixel data element per instance.
The reason for this is clear. Increasing the number of pixel data
elements requires more space to store the repeated tag number
of the pixel data element and consequently increases the
metadata size. The difference is equal to the tag size * (number
of frames per study - number of series per study).

This size reduction results in a reduction in the time
required for reading the DICOM studies. Table 4 shows that
the time required to read the studies in MFD and MSD in V2
format is on average about 72 and 68 % of the SFD format,
respectively. However, the time required for reading MFD
or MSD in V1 format is on average 124 and 125 % of the
SFD format, respectively. The study read time depends on
two factors. The first is the size of the metadata, and the
second is how the pixel data are arranged within the MSD
and MFD objects. The first factor decreased the time re-
quired to read the DICOM studies in MFD and MSD V2
formats because MFD and MSD have fewer data elements
than the SFD format. On the other hand, for the MSD and
MFD in V1 formats, the pixel data arrangement was the
dominant factor. Concatenating the pixel data for all frames
in a series in one data element increased the read time
especially for the series that has a large number of frames.

Table 5 shows that the de-duplication algorithm not only
does not increase the time required to read and parse the study,
it actually reduces the time to read and construct the study
object by about 10 % less than the time required to create it
without de-duplication. This is because all attributes are added
to the non-normalized study model, even if they are repeated,
which impacts performance because it increases the model

size in memory and consequently the time required to con-
struct the non-normalized study object.

Conclusion

Using sequence data elements, it is possible to store a DICOM
study in a single MSD object. The MSD format reduces the
number of data elements as well as the size of the metadata
compared to SFD and MFD. Reducing the metadata size also
reduces the time required to read and parse the study. How-
ever, the dominant factor that determines the time required to
read the study is the method used to arrange the pixel data
within the MFD and MSD objects. Concatenating the pixel
data for all frameswithin a series in a single-pixel data element
increases dramatically the time required to read the study. On
the other hand, storing the pixel data of each frame in a
separate pixel data element within the MFD or MSD object
does not create a performance issue. The one-pass de-
duplication algorithm is able to significantly reduce the size
of the study metadata. In addition, the algorithm has no
overhead due to its efficient design and implementation.

References

1. DICOM: DICOM standard. DICOM (Digital Imaging and Commu-
nications in Medicine), Part 3: Information Object Definitions,
Rosslyn, VA 2011. http://medical.nema.org/standard.html.
Accessed June 2012

J Digit Imaging (2013) 26:691–697 697

http://medical.nema.org/standard.html

	Multi-series DICOM: an Extension of DICOM That Stores a Whole Study in a Single Object
	Abstract
	Introduction
	Materials and Methods
	Study Model
	The One-Pass De-duplication Algorithm
	The Input/Output Package

	Results
	Discussion
	Conclusion
	References


