

DICOM in Dart (DCMiD)

Damish Shah Danielle Tinio Mentor: Dr. James Philbin

Stated Topic and Goal

Determine the feasibility of using binary DICOM for building browser based medical imaging applications

Method:

- Design and implement a DICOM editor that reads and writes binary DICOM and displays it using HTML5, CSS3 and the Dart programming language.
- Test performance by reading, displaying and writing DICOM studies in binary format.
- Goal: Read and display imaging studies in less than 3 seconds.

Digital Imaging and Communications in Medicine

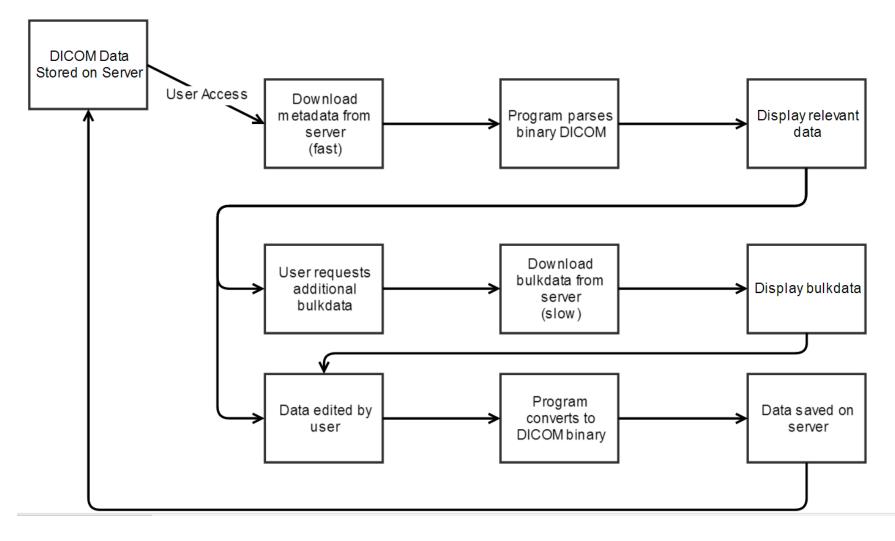
Relevance/Importance

- DICOM is the standard by which medical imaging information is transmitted, stored, and displayed for use by healthcare providers and their healthcare organizations.
- Nearly all healthcare systems use the DICOM standard in their medical equipment and information systems.
- The DICOM Standard does not specify any application implementation details.

Zero-footprint Client

- It is crucial that information systems be created that allow end users to access and edit DICOM data in a fast, secure, and intuitive manner.
- Zero Clients have many advantages over downloaded software applications:
 - HIPAA covered patient data is not stored on the end point device.
 - Data cache can be encrypted.
 - Applications can be maintained and upgraded without the need for access control on the end point device.
 - Improved security
 - Lower cost (management, implementation, security).

- Class based and object oriented programming language for creating web applications.
- Dart programs compile to JavaScript (dart2js) or native in Chromium.
- Native Dart code is much faster than JavaScript and dart2js during benchmarking.¹
- Development overhead can be simpler
 - Dart has classes, first class procedures, and optional static typing.



¹ DeltaBlue, FluidMotion, Richards, Tracer Benchmarks (https://www.dartlang.org/performance/)

Technical Summary and Approach

- Learn the DICOM standard to understand how medical imaging data is stored.
- Design a data structure for DICOM studies.
- Create a project plan including packages and classes for our viewer/editor.
- Learn the Dart syntax and translate our plan into code.
 - Develop unit tests for each class
- Iteratively optimize code.

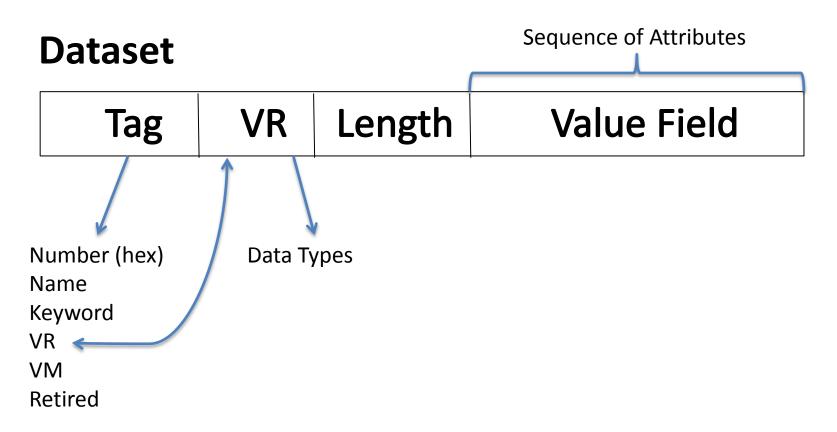
Block Diagram

Data Structures: Top Level

Information Model

- PatientStudies
- Patient
- Study
- Series
- Instance
- Frame

Data Types


- Dataset
- Sequence
- Attribute
- aType (attribute type)
- VR (Value Representation)
- ValueType
- VM (Value Multiplicity)

Data Structure: Top Level

DICOM (structured study)

- Patient
- Study
 - -Series
 - —Instance
 - —Frame

Data Structure: DICOM Internals

Tag can have a value of sequence.

Value field is an array of items and each item contains a data set.

Packages and Classes

- Study
 - Atype
 - Bulkdata
 - DataSet
 - Instance
 - PatientName
 - QC-mode
 - Sequence Series
 - Studies Study
 - TagDictionary
 - UT
 - ValueField
 - VM
 - VR
- I/O
 - BulkdataInputStream
 - BulkdataOutputStream
 - MetadataInputStream
 - MetadataOutputStream

- ReadBulkdata
- ReadMetadata
- WriteBulkdata
- WriteMetadata
- Test
 - ReadThenWriteMetadata
 - VM-Test
- Display
 - DisplayImage
 - Study
 - WorkList
- Util
 - ByteUtils
 - DateRange
 - DateUtils
 - StringUtils
 - TagUtils
 - UIDUtils
 - UUIDUtils

Deliverables

- Minimum deliverables
 - Read and display DICOM in a browser and then write it
 - Build a test program that compares input and output to validate correctness
 - Create unit tests for each class
- Expected deliverables
 - Display a work list of studies of n patients
 - Display patient as collapse/expand tree for study information model
- Maximum deliverables
 - Edit metadata
 - Display images and add overlay information
 - Encrypt and decrypt studies using AES (GCM) using an encryption framework created at Hopkins Security Institute.

Dependencies

- Access to our mentor
- Computer to write code
- Bitbucket to share code
- Dart & DICOM Reference Information
- Access to DICOM Test Data

Management Plan

- Meet twice a week to work on code as a team.
 - Mondays & Fridays at 10:00AM
- Weekly meetings with Dr. Philbin
 - Wednesdays at 9:30AM
 - Code reviews as classes and modules develop
- More meetings can be scheduled as required.

Key Dates

- February 20: Have project proposal finished and all of the programming planned and reviewed by Dr. Philbin
- March 6: Read input (parse)
- March 20: Write and validate output
- April 3: HTML5/CSS3 display metadata
- April 17: Edit data
- May 1: Display/Edit images
- May 9: Final Poster Presentation

Reading List

- MINT Toolkit source code and documentation (provided by Dr. Philbin)
- DICOM Standard
- Dart documentation
- Mahmoud Ismail and James Philbin, Multi-series DICOM: an Extension of DICOM That Stores a Whole Study in a Single Object. Journal of Digital Imaging, August 2013; 26(4):691-697
- James Philbin, Tim Culp, Tim Dawson, Jonathan Whitby. RESTful Web Services in DICOM. *The DICOM 2013 International Conference*, Bangalore, India. March 2013.
- James Philbin, Mahmoud Ismail. Fast, Storage Efficient De-identification of Medical Studies. *The DICOM 2013 International Conference*, Bangalore, India. March 2013.
- Mahmoud Ismail, Yu Ning, James Philbin. Transmission of DICOM Studies using Multi-Series DICOM Objects. Proceedings SPIE 8674, Medical Imaging 2013: Advanced PACS-based Imaging Informatics and Therapeutic Applications. April 8, 2013.
- Mahmoud Ismail, Yu Ning, and James Philbin, Separation of metadata and pixel data to speed DICOM tag morphing. SPIE Medical Imaging 2014: PACS and Imaging Informatics: Next Generation and Innovations, Forthcoming.