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1 Introduction

I am investigating the methods by which we can use methods from inverse
optimal control to improve human capabilities and assist surgical procedures.
To this end, I looked at papers from groups that have looked into learning
from demonstration and techniques for learning from demonstration that
could be adapted to a real-world robotics task.

2 Continuous Inverse Optimal Control with

Locally Optimal Examples

A major limitation in applying existing methods for inverse optimal control
(IOC) to robotic examples is the high dimensionality of these examples. I
am interested in addressing this by looking in to recent work by Levine et
al [2]. This paper an interesting inverse optimal control paper that goes into
an method for inverse optimal control on continuous valued data rather than
discrete valued data, as many previous papers assume (e.g. [4]). This work
also has the added advantage of using locally optimal, rather than globally
optimal examples: this means that if the human is limited by clumsy controls
the system might be able to learn a better approach.

2.1 Summary

The classic maximum entropy IOC problem as defined in prior work [4] is
given in Equation (1). We assume that robot control is deterministic and
that we have a finite horizon.
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P (u|x0) =
1

Z
exp

∑
t

r(xt, ut)

 (1)

Computing the partition function Z is incredibly costly. To evaluate
Eq. (1) without computing Z, the authors apply the Laplace approximation
and model the distribution locally as a Gaussian. This corresponds to as-
suming that the expert performed a local, not global, optimization. Eq. (1)
is rewritten as an integral in the continuous case, where r(u) denotes the sum
of the rewards along a given path (x0, u).

P (u|x0) = er(u)

∫ er(ū)dū

−1

(2)

In this case, r(ū) is the sum of all rewards along a different path; the
equation is the sum of the log-linear rewards along one path (x0, u) over
the sum of the log-linear rewards of all possible paths (x0, ū). The authors
approximate this probability with a second order Taylor expansion:

r(ū) ≈ r(u) + (ū− u)T
δr

δu
+

1

2
(ū− u)T

δ2r

δu2
(ū− u) (3)

With the gradient δr
δu

as g and the Hessian δ2r
δu2

as H, Eq. (1) can be
rewritten as in Eq. (4). We use the Laplace approximation to rewrite this as
a Gaussian, with n as the number of dimensions in the space of actions u.

P (u|x0) ≈ er(u)

∫ e
r(u)+(ū−u)T g+

1

2
(ū−u)TH(ū−u)

dū

−1

= e
1
2
gTH−1g + | −H|

1
2 (2π)−

n
2

(4)

This in turn gives us the approximate log-likelihood in Eq. (5), which can
be optimized directly using any number of methods:

L =
1

2
gTH−1g +

1

2
log | −H| − n

2
log 2π (5)

This equation is the primary contribution of the paper. The authors also
provide an efficient method to compute the linear system H−1g, a key part
of Equation (5) and its gradient, and then examine efficient methods for
computing the log-likelihood and the gradient of the log-likelihood.
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It is possible to use a linear or nonlinear kernel for the reward function.
If solving for a nonlinear reward function, the authors represent the reward
function as a Gaussian. In this case, they jointly optimize the log-likelihood
from Equation (5) plus the Gaussian kernel likelihood from Equation (6),
where F is a set of inducing feature points (from the expert demonstrations)
and the output of the Gaussian reward function y is learned.

logP (y, λ, β|F ) = −1

2
yTK−1y − 1

2
log |K|+ logP (λ, β|F ) (6)

Here K is the Gaussian covariance matrix such that Kij = k(f i, f j),
and λ and β are the parameters of the Gaussian kernel function k given in
Equation (7).

k(f i, f j, λ, β) = β exp

−1

2

∑
k

λk
[
(f ik − f

j
k)2 + 1i 6=jσ

2
] (7)

This is applied in the paper to a couple of sample problems, including a
simulated driving task and a multi-robot arm movement task in two dimen-
sions. The authors showed that they were better able to learn the underlying
reward function in the arm manipulation task.

2.2 Analysis

The paper’s assumptions are all reasonable to make in our test case: we have
a model of the world that tells us where the robot can go, and we are trying
to accomplish a single task in a short amount of time.

The authors validate their method by showing they can learn a very
similar reward function to the one used to generate data; especially since
this is not a widely used example problem I believe this is not a particularly
convincing method to demonstrate the algorithm. The reward function they
were trying to match had a number of ”valleys” with low reward and a
Gaussian peak, meaning that it very closely matched their own Gaussian
assumptions.

The simulated driving task was more interesting. In this case the authors
were able to very closely mimic held-out human demonstrations of aggressive
driving, evasive driving, or tailgating other cars. I think one large problem
with this paper is that results seem highly dependent on the kernel function
chosen; one must choose a reward function that seems to fit the task, and
fine tune parameters like the noise term σ from Equation (7).
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One useful property of this work is that it looks into continuous optimal
control that can use noisy, locally optimal data to find a solution; this is useful
to robotic semi-automation research because it is entirely possible that the
human operators will make less than optimal choices simply because they
are limited by the controls.

One excellent feature of this paper is that a large amount of supplemental
material is provided, including MATLAB source code, videos, and errata.
This is online at http://graphics.stanford.edu/projects/cioc/, which
would make it much easier for anyone interested in implementing or extending
the algorithm. It also makes it possible to reproduce their results from ICML.

2.3 Application to Project

I believe that the continuous IOC code described here would fit well as a
part of this project. It is an interesting and efficient approach that can deal
with high dimensionality navigation tasks in complex environments.

As the paper points out, there are not many good options for IOC that can
be applied to complex tasks with high dimensionality. Some previous work
has looked into learning solutions to problems with linear dynamics and
quadratic rewards (LQR); previous work in inverse reinforcement learning
has largely avoided real-world robotic examples. I believe that this approach
could be adapted into something useful for my project.

3 Trajectory Transfer

Recent work by Pieter Abbeel’s group at UC Berkeley [3] looked at trans-
ferring learned skills between different contexts, looking at both a simulated
Raven-II surgical robot and a real-world robotic example with a PR2 robot.

4 Summary

The authors look at ways to take an example trajectory from an expert and
adapt it to a new context. First, they collect an example and perform a non-
rigid registration between the demonstration and the task scene. Then the
authors apply this transform to the demonstration trajectory, convert this
end effector trajectory into joint positions for the robot to take, and execute
the task by moving through this series of joint positions.

The approach is first tested with a simulated Raven-II robot. The Raven-
II was remotely operated with a pair of Phantom OMNIs; the operator presses
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a foot pedal to divide the task performance into segments. They used markers
on the ends of the simulated suturing pad to perform the registration. A
second suturing pad was perturbed by translations of 0.25 cm on the x axis
and 0.5 cm on the y and z axes, and rotations of 5 degrees. The authors
show that the algorithm is able to adapt the demonstrated trajectory in all
of these cases.

For the PR2 experiment, a single high-quality RGBD video of a task
performance was obtained and annotated. The same method was applied
to a large suturing task. In this case, the system did not need to deter-
mine correspondence between different contexts: a human operator provided
corresponding points.

4.1 Analysis of Paper

This is an interesting paper because it solves the same example problem I
want to be able to solve. However, I believe there are a few problems with
directly using this approach. It still relies on a completely optimal expert
demonstrations, and it makes a very large assumption: that the context of
the example performance of the task is exactly the same as the test, with the
addition of a non-rigid transformation.

This approach also cannot provide feedback or generate a reward func-
tion to follow; this means that we cannot use it to assist a human trainee
or surgeon who takes a slightly different path than the expert. An IOC re-
ward function might reveal multiple paths that are the same or only slightly
different in cost; the approach described by the authors of this paper only
allows the exact replication of a trajectory deformed into a new context.

4.2 Application to Project

This paper is interesting because it shows a simpler and more reliable method
for learning from demonstration and proves it with a real-world robotic ex-
ample. While this approach does not allow the operator to adapt a trajectory
to a new environment in every case, it could be combined with something like
previous work from Amir Masoud in the CIRL lab [1] to learn a quadratic
penalty function around a trajectory and exponential cost functions around
features of the environment. If IOC proves impractical, this might be a good
foundation for a robust approach for human-machine collaboration.
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