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Abstract— This paper addresses the motion planning problem
while considering Human-Robot Interaction (HRI) constraints.
The proposed planner generates collision-free paths that are
acceptable and legible to the human. The method extends our
previous work on human-aware path planning to cluttered
environments. A randomized cost-based exploration method
provides an initial path that is relevant with respect to HRI
and workspace constraints. The quality of the path is further
improved with a local path-optimization method. Simulation
results on mobile manipulators in the presence of humans
demonstrate the overall efficacy of the approach.

I. INTRODUCTION

In an environment where robots and humans co-exist and
work together, robot motions need to explicitly take into
account the presence of humans. Therefore, hardware as well
as software components need to be designed by considering
human’s safety [5], [15]. Besides ensuring safety in robot
hardware with compliant designs [20], [1], the motions of
the robot need to be planned in a “human-aware” manner.

In previous work [17], [18], we have presented a mo-
tion planner that explicitly takes into account human-robot
constraints (e.g. their relative distance, the human’s field of
view and posture) to synthesize navigation and manipulation
motions. This planner was based on human-robot user stud-
ies [11], as well as on existing human-human space sharing
theories [8]. The proposed method was to our knowledge the
first to investigate a “planning” approach to the problem of
human-robot intelligent space sharing. HRI constraints were
represented through cost functions depending respectively on
the human kinematic model, field of view and accessibility.
This representation of the problem led to costmaps defined
over the workspace. Motion planning was solved using grid
search techniques for planning object motions, and general-
ized inverse kinematics for the robot to follow the planned
object path. While this decoupled approach is sufficient in
the absence of strong workspace constraints, it may fail in
cluttered environments such as shown in Figure 1.

In this paper we extend the capabilities of the planner
using sampling-based planning algorithms, which enable
planning in the robot configuration space and finding human-
aware motions in cluttered environments. Sampling-based
path planning methods [2], [13], are able to handle complex
problems in high-dimensional spaces. However, they usually
operate in a binary configuration space, aiming to find

Fig. 1. A cluttered environment such as a home provides a difficult
workspace for robot motion planning in which the human presence adds
new constraints. In this paper we propose to use a sampling-based method
to achieve high-dimensional optimal planning regarding cost functions
designed to take explicitly the human into account.

feasible collision-free solutions rather than optimal paths.
Moreover, due to their probabilistic nature, solution paths
have generally low quality, and a post-processing phase is
commonly used to improve them locally regarding specific
criteria (e.g. length, clearance). The proposed method relies
on the recent algorithm T-RRT [9], which computes good-
quality paths given a general cost-function defined over the
robot configuration space. The solutions provided by T-
RRT are further improved using local optimization methods
also described in the paper. Finally, we present a refined
description of the HRI constraints, in particular the ”arm
comfort constraint” only used in [18] for computing the
object transfer point of hand over tasks while considered
here for planning robot motions.

The paper is organized as follows. Next section describes
the model of the HRI constraints. Section III presents the
path planning method. First, the T-RRT algorithm, which is
used to find a first good-quality path, is briefly explained.

(a) Distance costmap (b) Visibility costmap

Fig. 2. The costmaps model the distance and visibility constraint by
assigning to each point of the cartesian space an HRI cost. The safety
cost function is inversely proportional to its distance to the human while
the visibility cost function reasons about the field of view modeled by the
gaze direction.

Then, we describe post-processing methods that can be
applied to further improve path quality over a configuration-
space costmap. Finally, experimental results are presented to
demonstrate the efficacy of the approach (Section IV).

II. HUMAN-ROBOT INTERACTIONS CONSTRAINTS

The presence of humans in a robot workspace brings
new constraints to navigation and manipulation planning. In
this work, several examples of important constraints have
been taken into account, such as safety, visibility and arm
comfort which are further detailed. These constraints have
to be considered as examples of the broad variety of HRI
properties that can be taken as input of our planner.

The first constraint depicted in Figure 2, called distance
constraint, mainly focuses on ensuring the safety of the
interaction by controlling the distance between the robot and
the human. Only an approximate bounding volume of the
human body without considering the arm geometry is used
for the distance computation. This safety constraint, which
is reasonable, given that the focus is set on preventing any
risk of harmful collision between the human and the robot,
keeps the robot away from the head and body. Moreover, it
has been also shown in proxemics theory [8] that violation
of an intimate space radius generates a feeling of intrusion.
Therefore the farther a point is situated from the human, the
lesser its HRI safety cost is, until some maximum threshold
at which it becomes null.

The second constraint, called visibility constraint, has the
purpose of limiting the human’s surprise as the robot is mov-
ing in the workspace. A human will feel less surprise if the
robot stays in sight resulting in a safer and more comfortable
interaction as shown in [17]. Thus each workspace point
has a cost proportional to the angle between the gaze and its
position in Cartesian space as illustrated in Figure 2.

The third constraint, called arm comfort constraint, was
introduced in [18] to compute object transfer position in hand
over tasks with the human. This section presents a refined
description of this constraint, that is also considered by the

motion planner in order to generate paths for which it is easy
for the human to access an object held by the robot at any
time. For this the robot must reason on humans’ accessibility
and kinematics. The presupposed human reaching volume
can be preprocessed using generalized inverse kinematics
(GIK). For each position inside the reaching volume, the
torso configuration is determined to stay as close as possible
to a given resting posture. Collision detection against the
environment is used to further validate those postures. Then,
to each valid reaching posture is assigned a comfort cost as
shown in Figure 3 by using the predictive human-posture
cost function introduced in [14]. The comfort is estimated
by the sum of the three functions:

• The first function computes a joint angle distance from
a resting posture qN to the actual posture where q is
the configuration of the human:

f1 =
∑DOF

i=1
wi(qi − qNi )2

• The second considers the potential energy of the arm
which is defined by the difference of the arm and
forearm heights with those of a resting posture (∆zi)
pondered by an estimation of the arm and forearm
mass mi :

f2 =
∑2

i=1
(mig)2(∆zi)2

• The third penalizes configuration close to joint limits.
To each joint corresponds a minimum and a maximum
limit and the distance to the closest limit (∆qi) is taken
into account in the cost function as follows:

f3 =
∑DOF

i=1
γi∆q2i

Fig. 3. Arm comfort: Four poses that vary from comfortable and natural
on the upper left corner to uncomfortable and uneasy postures on the lower
right corner, the color gradient expresses the corresponding cost function
value.
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path planning methods [2], [13], are able to handle complex
problems in high-dimensional spaces. However, they usually
operate in a binary configuration space, aiming to find

Fig. 1. A cluttered environment such as a home provides a difficult
workspace for robot motion planning in which the human presence adds
new constraints. In this paper we propose to use a sampling-based method
to achieve high-dimensional optimal planning regarding cost functions
designed to take explicitly the human into account.

feasible collision-free solutions rather than optimal paths.
Moreover, due to their probabilistic nature, solution paths
have generally low quality, and a post-processing phase is
commonly used to improve them locally regarding specific
criteria (e.g. length, clearance). The proposed method relies
on the recent algorithm T-RRT [9], which computes good-
quality paths given a general cost-function defined over the
robot configuration space. The solutions provided by T-
RRT are further improved using local optimization methods
also described in the paper. Finally, we present a refined
description of the HRI constraints, in particular the ”arm
comfort constraint” only used in [18] for computing the
object transfer point of hand over tasks while considered
here for planning robot motions.

The paper is organized as follows. Next section describes
the model of the HRI constraints. Section III presents the
path planning method. First, the T-RRT algorithm, which is
used to find a first good-quality path, is briefly explained.
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Fig. 2. The costmaps model the distance and visibility constraint by
assigning to each point of the cartesian space an HRI cost. The safety
cost function is inversely proportional to its distance to the human while
the visibility cost function reasons about the field of view modeled by the
gaze direction.

Then, we describe post-processing methods that can be
applied to further improve path quality over a configuration-
space costmap. Finally, experimental results are presented to
demonstrate the efficacy of the approach (Section IV).

II. HUMAN-ROBOT INTERACTIONS CONSTRAINTS

The presence of humans in a robot workspace brings
new constraints to navigation and manipulation planning. In
this work, several examples of important constraints have
been taken into account, such as safety, visibility and arm
comfort which are further detailed. These constraints have
to be considered as examples of the broad variety of HRI
properties that can be taken as input of our planner.

The first constraint depicted in Figure 2, called distance
constraint, mainly focuses on ensuring the safety of the
interaction by controlling the distance between the robot and
the human. Only an approximate bounding volume of the
human body without considering the arm geometry is used
for the distance computation. This safety constraint, which
is reasonable, given that the focus is set on preventing any
risk of harmful collision between the human and the robot,
keeps the robot away from the head and body. Moreover, it
has been also shown in proxemics theory [8] that violation
of an intimate space radius generates a feeling of intrusion.
Therefore the farther a point is situated from the human, the
lesser its HRI safety cost is, until some maximum threshold
at which it becomes null.

The second constraint, called visibility constraint, has the
purpose of limiting the human’s surprise as the robot is mov-
ing in the workspace. A human will feel less surprise if the
robot stays in sight resulting in a safer and more comfortable
interaction as shown in [17]. Thus each workspace point
has a cost proportional to the angle between the gaze and its
position in Cartesian space as illustrated in Figure 2.

The third constraint, called arm comfort constraint, was
introduced in [18] to compute object transfer position in hand
over tasks with the human. This section presents a refined
description of this constraint, that is also considered by the

motion planner in order to generate paths for which it is easy
for the human to access an object held by the robot at any
time. For this the robot must reason on humans’ accessibility
and kinematics. The presupposed human reaching volume
can be preprocessed using generalized inverse kinematics
(GIK). For each position inside the reaching volume, the
torso configuration is determined to stay as close as possible
to a given resting posture. Collision detection against the
environment is used to further validate those postures. Then,
to each valid reaching posture is assigned a comfort cost as
shown in Figure 3 by using the predictive human-posture
cost function introduced in [14]. The comfort is estimated
by the sum of the three functions:

• The first function computes a joint angle distance from
a resting posture qN to the actual posture where q is
the configuration of the human:

f1 =
∑DOF

i=1
wi(qi − qNi )2

• The second considers the potential energy of the arm
which is defined by the difference of the arm and
forearm heights with those of a resting posture (∆zi)
pondered by an estimation of the arm and forearm
mass mi :

f2 =
∑2

i=1
(mig)2(∆zi)2

• The third penalizes configuration close to joint limits.
To each joint corresponds a minimum and a maximum
limit and the distance to the closest limit (∆qi) is taken
into account in the cost function as follows:

f3 =
∑DOF

i=1
γi∆q2i

Fig. 3. Arm comfort: Four poses that vary from comfortable and natural
on the upper left corner to uncomfortable and uneasy postures on the lower
right corner, the color gradient expresses the corresponding cost function
value.



Mainprice et al.  Item handoff 
Constraints

1.  Distance of human joint 
angles q from a resting 
posture. 
 

2.  Potential energy of 
human arm using 
forearm height, distance 
from resting posture Δz 
and an estimation of arm 
mass. 
 

3.  Configurations close to 
joint limits are penalized. 

(a) Distance costmap (b) Visibility costmap

Fig. 2. The costmaps model the distance and visibility constraint by
assigning to each point of the cartesian space an HRI cost. The safety
cost function is inversely proportional to its distance to the human while
the visibility cost function reasons about the field of view modeled by the
gaze direction.

Then, we describe post-processing methods that can be
applied to further improve path quality over a configuration-
space costmap. Finally, experimental results are presented to
demonstrate the efficacy of the approach (Section IV).

II. HUMAN-ROBOT INTERACTIONS CONSTRAINTS

The presence of humans in a robot workspace brings
new constraints to navigation and manipulation planning. In
this work, several examples of important constraints have
been taken into account, such as safety, visibility and arm
comfort which are further detailed. These constraints have
to be considered as examples of the broad variety of HRI
properties that can be taken as input of our planner.

The first constraint depicted in Figure 2, called distance
constraint, mainly focuses on ensuring the safety of the
interaction by controlling the distance between the robot and
the human. Only an approximate bounding volume of the
human body without considering the arm geometry is used
for the distance computation. This safety constraint, which
is reasonable, given that the focus is set on preventing any
risk of harmful collision between the human and the robot,
keeps the robot away from the head and body. Moreover, it
has been also shown in proxemics theory [8] that violation
of an intimate space radius generates a feeling of intrusion.
Therefore the farther a point is situated from the human, the
lesser its HRI safety cost is, until some maximum threshold
at which it becomes null.

The second constraint, called visibility constraint, has the
purpose of limiting the human’s surprise as the robot is mov-
ing in the workspace. A human will feel less surprise if the
robot stays in sight resulting in a safer and more comfortable
interaction as shown in [17]. Thus each workspace point
has a cost proportional to the angle between the gaze and its
position in Cartesian space as illustrated in Figure 2.

The third constraint, called arm comfort constraint, was
introduced in [18] to compute object transfer position in hand
over tasks with the human. This section presents a refined
description of this constraint, that is also considered by the

motion planner in order to generate paths for which it is easy
for the human to access an object held by the robot at any
time. For this the robot must reason on humans’ accessibility
and kinematics. The presupposed human reaching volume
can be preprocessed using generalized inverse kinematics
(GIK). For each position inside the reaching volume, the
torso configuration is determined to stay as close as possible
to a given resting posture. Collision detection against the
environment is used to further validate those postures. Then,
to each valid reaching posture is assigned a comfort cost as
shown in Figure 3 by using the predictive human-posture
cost function introduced in [14]. The comfort is estimated
by the sum of the three functions:

• The first function computes a joint angle distance from
a resting posture qN to the actual posture where q is
the configuration of the human:

f1 =
∑DOF

i=1
wi(qi − qNi )2

• The second considers the potential energy of the arm
which is defined by the difference of the arm and
forearm heights with those of a resting posture (∆zi)
pondered by an estimation of the arm and forearm
mass mi :

f2 =
∑2

i=1
(mig)2(∆zi)2

• The third penalizes configuration close to joint limits.
To each joint corresponds a minimum and a maximum
limit and the distance to the closest limit (∆qi) is taken
into account in the cost function as follows:

f3 =
∑DOF

i=1
γi∆q2i

Fig. 3. Arm comfort: Four poses that vary from comfortable and natural
on the upper left corner to uncomfortable and uneasy postures on the lower
right corner, the color gradient expresses the corresponding cost function
value.

(a) Distance costmap (b) Visibility costmap

Fig. 2. The costmaps model the distance and visibility constraint by
assigning to each point of the cartesian space an HRI cost. The safety
cost function is inversely proportional to its distance to the human while
the visibility cost function reasons about the field of view modeled by the
gaze direction.

Then, we describe post-processing methods that can be
applied to further improve path quality over a configuration-
space costmap. Finally, experimental results are presented to
demonstrate the efficacy of the approach (Section IV).

II. HUMAN-ROBOT INTERACTIONS CONSTRAINTS

The presence of humans in a robot workspace brings
new constraints to navigation and manipulation planning. In
this work, several examples of important constraints have
been taken into account, such as safety, visibility and arm
comfort which are further detailed. These constraints have
to be considered as examples of the broad variety of HRI
properties that can be taken as input of our planner.

The first constraint depicted in Figure 2, called distance
constraint, mainly focuses on ensuring the safety of the
interaction by controlling the distance between the robot and
the human. Only an approximate bounding volume of the
human body without considering the arm geometry is used
for the distance computation. This safety constraint, which
is reasonable, given that the focus is set on preventing any
risk of harmful collision between the human and the robot,
keeps the robot away from the head and body. Moreover, it
has been also shown in proxemics theory [8] that violation
of an intimate space radius generates a feeling of intrusion.
Therefore the farther a point is situated from the human, the
lesser its HRI safety cost is, until some maximum threshold
at which it becomes null.

The second constraint, called visibility constraint, has the
purpose of limiting the human’s surprise as the robot is mov-
ing in the workspace. A human will feel less surprise if the
robot stays in sight resulting in a safer and more comfortable
interaction as shown in [17]. Thus each workspace point
has a cost proportional to the angle between the gaze and its
position in Cartesian space as illustrated in Figure 2.

The third constraint, called arm comfort constraint, was
introduced in [18] to compute object transfer position in hand
over tasks with the human. This section presents a refined
description of this constraint, that is also considered by the

motion planner in order to generate paths for which it is easy
for the human to access an object held by the robot at any
time. For this the robot must reason on humans’ accessibility
and kinematics. The presupposed human reaching volume
can be preprocessed using generalized inverse kinematics
(GIK). For each position inside the reaching volume, the
torso configuration is determined to stay as close as possible
to a given resting posture. Collision detection against the
environment is used to further validate those postures. Then,
to each valid reaching posture is assigned a comfort cost as
shown in Figure 3 by using the predictive human-posture
cost function introduced in [14]. The comfort is estimated
by the sum of the three functions:

• The first function computes a joint angle distance from
a resting posture qN to the actual posture where q is
the configuration of the human:

f1 =
∑DOF

i=1
wi(qi − qNi )2

• The second considers the potential energy of the arm
which is defined by the difference of the arm and
forearm heights with those of a resting posture (∆zi)
pondered by an estimation of the arm and forearm
mass mi :

f2 =
∑2

i=1
(mig)2(∆zi)2

• The third penalizes configuration close to joint limits.
To each joint corresponds a minimum and a maximum
limit and the distance to the closest limit (∆qi) is taken
into account in the cost function as follows:

f3 =
∑DOF

i=1
γi∆q2i

Fig. 3. Arm comfort: Four poses that vary from comfortable and natural
on the upper left corner to uncomfortable and uneasy postures on the lower
right corner, the color gradient expresses the corresponding cost function
value.

(a) Distance costmap (b) Visibility costmap

Fig. 2. The costmaps model the distance and visibility constraint by
assigning to each point of the cartesian space an HRI cost. The safety
cost function is inversely proportional to its distance to the human while
the visibility cost function reasons about the field of view modeled by the
gaze direction.

Then, we describe post-processing methods that can be
applied to further improve path quality over a configuration-
space costmap. Finally, experimental results are presented to
demonstrate the efficacy of the approach (Section IV).

II. HUMAN-ROBOT INTERACTIONS CONSTRAINTS

The presence of humans in a robot workspace brings
new constraints to navigation and manipulation planning. In
this work, several examples of important constraints have
been taken into account, such as safety, visibility and arm
comfort which are further detailed. These constraints have
to be considered as examples of the broad variety of HRI
properties that can be taken as input of our planner.

The first constraint depicted in Figure 2, called distance
constraint, mainly focuses on ensuring the safety of the
interaction by controlling the distance between the robot and
the human. Only an approximate bounding volume of the
human body without considering the arm geometry is used
for the distance computation. This safety constraint, which
is reasonable, given that the focus is set on preventing any
risk of harmful collision between the human and the robot,
keeps the robot away from the head and body. Moreover, it
has been also shown in proxemics theory [8] that violation
of an intimate space radius generates a feeling of intrusion.
Therefore the farther a point is situated from the human, the
lesser its HRI safety cost is, until some maximum threshold
at which it becomes null.

The second constraint, called visibility constraint, has the
purpose of limiting the human’s surprise as the robot is mov-
ing in the workspace. A human will feel less surprise if the
robot stays in sight resulting in a safer and more comfortable
interaction as shown in [17]. Thus each workspace point
has a cost proportional to the angle between the gaze and its
position in Cartesian space as illustrated in Figure 2.

The third constraint, called arm comfort constraint, was
introduced in [18] to compute object transfer position in hand
over tasks with the human. This section presents a refined
description of this constraint, that is also considered by the

motion planner in order to generate paths for which it is easy
for the human to access an object held by the robot at any
time. For this the robot must reason on humans’ accessibility
and kinematics. The presupposed human reaching volume
can be preprocessed using generalized inverse kinematics
(GIK). For each position inside the reaching volume, the
torso configuration is determined to stay as close as possible
to a given resting posture. Collision detection against the
environment is used to further validate those postures. Then,
to each valid reaching posture is assigned a comfort cost as
shown in Figure 3 by using the predictive human-posture
cost function introduced in [14]. The comfort is estimated
by the sum of the three functions:

• The first function computes a joint angle distance from
a resting posture qN to the actual posture where q is
the configuration of the human:

f1 =
∑DOF

i=1
wi(qi − qNi )2

• The second considers the potential energy of the arm
which is defined by the difference of the arm and
forearm heights with those of a resting posture (∆zi)
pondered by an estimation of the arm and forearm
mass mi :

f2 =
∑2

i=1
(mig)2(∆zi)2

• The third penalizes configuration close to joint limits.
To each joint corresponds a minimum and a maximum
limit and the distance to the closest limit (∆qi) is taken
into account in the cost function as follows:

f3 =
∑DOF

i=1
γi∆q2i

Fig. 3. Arm comfort: Four poses that vary from comfortable and natural
on the upper left corner to uncomfortable and uneasy postures on the lower
right corner, the color gradient expresses the corresponding cost function
value.

(a) Distance costmap (b) Visibility costmap

Fig. 2. The costmaps model the distance and visibility constraint by
assigning to each point of the cartesian space an HRI cost. The safety
cost function is inversely proportional to its distance to the human while
the visibility cost function reasons about the field of view modeled by the
gaze direction.

Then, we describe post-processing methods that can be
applied to further improve path quality over a configuration-
space costmap. Finally, experimental results are presented to
demonstrate the efficacy of the approach (Section IV).

II. HUMAN-ROBOT INTERACTIONS CONSTRAINTS

The presence of humans in a robot workspace brings
new constraints to navigation and manipulation planning. In
this work, several examples of important constraints have
been taken into account, such as safety, visibility and arm
comfort which are further detailed. These constraints have
to be considered as examples of the broad variety of HRI
properties that can be taken as input of our planner.

The first constraint depicted in Figure 2, called distance
constraint, mainly focuses on ensuring the safety of the
interaction by controlling the distance between the robot and
the human. Only an approximate bounding volume of the
human body without considering the arm geometry is used
for the distance computation. This safety constraint, which
is reasonable, given that the focus is set on preventing any
risk of harmful collision between the human and the robot,
keeps the robot away from the head and body. Moreover, it
has been also shown in proxemics theory [8] that violation
of an intimate space radius generates a feeling of intrusion.
Therefore the farther a point is situated from the human, the
lesser its HRI safety cost is, until some maximum threshold
at which it becomes null.

The second constraint, called visibility constraint, has the
purpose of limiting the human’s surprise as the robot is mov-
ing in the workspace. A human will feel less surprise if the
robot stays in sight resulting in a safer and more comfortable
interaction as shown in [17]. Thus each workspace point
has a cost proportional to the angle between the gaze and its
position in Cartesian space as illustrated in Figure 2.

The third constraint, called arm comfort constraint, was
introduced in [18] to compute object transfer position in hand
over tasks with the human. This section presents a refined
description of this constraint, that is also considered by the

motion planner in order to generate paths for which it is easy
for the human to access an object held by the robot at any
time. For this the robot must reason on humans’ accessibility
and kinematics. The presupposed human reaching volume
can be preprocessed using generalized inverse kinematics
(GIK). For each position inside the reaching volume, the
torso configuration is determined to stay as close as possible
to a given resting posture. Collision detection against the
environment is used to further validate those postures. Then,
to each valid reaching posture is assigned a comfort cost as
shown in Figure 3 by using the predictive human-posture
cost function introduced in [14]. The comfort is estimated
by the sum of the three functions:

• The first function computes a joint angle distance from
a resting posture qN to the actual posture where q is
the configuration of the human:

f1 =
∑DOF

i=1
wi(qi − qNi )2

• The second considers the potential energy of the arm
which is defined by the difference of the arm and
forearm heights with those of a resting posture (∆zi)
pondered by an estimation of the arm and forearm
mass mi :

f2 =
∑2

i=1
(mig)2(∆zi)2

• The third penalizes configuration close to joint limits.
To each joint corresponds a minimum and a maximum
limit and the distance to the closest limit (∆qi) is taken
into account in the cost function as follows:

f3 =
∑DOF

i=1
γi∆q2i

Fig. 3. Arm comfort: Four poses that vary from comfortable and natural
on the upper left corner to uncomfortable and uneasy postures on the lower
right corner, the color gradient expresses the corresponding cost function
value.



Combined Costmap
Constraints are combined with a weighted sum in a 3D costmap.  
•  h – human model posture 
•  x – Point in workspace 

Ultimately, cost is defined in the robot’s 
configuration space. 
•  FK – robot forward kinematics function 
•  q – robot configuration 

Each constraint expressed as an elementary three-
dimensional costmap is combined with a weighted sum as
follows:

c(h, x) =
N
∑

i=1

wici(h, x),

where h is the human model posture and x the point of the
workspace for which the cost is computed. In the current
implementation the weights are defined manually and the
cost functions are evaluated ”on the fly” during planning .

The planners of [17], [18] were based on a direct search on
the resulting cartesian grids to produce legible and comfort-
able motions using basic graph search techniques. In [17],
navigation tasks were performed based on 2D cost grids
explored by an A* algorithm. Extension to manipulation
tasks [18] led to cartesian grids used to compute the end
effector path, assuming the computed path was feasible for
the robot. While such a decoupled approach is sufficient in
the absence of strong environmental constraints, it may fail
in situations where the path planned for the object can not be
followed by the robot because of collisions with workspace
obstacles. Hence, the extension to costmaps defined over the
robot configuration space is desirable.

III. PLANNING LOW COST PATHS

Instead of considering a grid on the workspace, a cost is
defined for each robot configuration as:

c(h, q) =
N
∑

i=1

wici(h, FK(q)),

where q is a configuration and FK the robot’s forward
kinematics function. Given the resulting configuration-space
costmap, we adopt a sampling-based algorithm for com-
puting good-quality paths. Several approaches have been
introduced in former works, in particular RRT variants [6],
[19], [3] in the context of field robotics or more recently
in [10]. In this work, we apply a more general algorithm,
called T-RRT [9], briefly explained below. This section
also presents a new algorithm for local optimization of the
solution through a post-processing phase that also handles
such general cost functions.

A. Costmap exploration

The T-RRT algorithm [9] takes advantage of the perfor-
mance of two methods. First, it benefits from the exploratory
strength of RRT-like planners resulting from their expansion
bias toward large Voronoi regions of the space. Additionally,
it integrates features of stochastic optimization methods,
which apply transition tests to accept or reject potential
states. It makes the search follow valleys and saddle points
of the cost-space in order to compute low-cost solution paths
(see Figure 4). Several criteria can be used to measure the
quality of a path based on its parametric cost function (e.g.
the maximal cost, the average cost, the integral cost along the
path, or the mechanical work). The T-RRT algorithm aims at
finding paths that minimize the mechanical work criterion,

Algorithm 1: Transition-based RRT

input : the configuration space CS;
the cost function c : CS → R

∗

+;
the root qinit and the goal qgoal;

output : the tree T ;

begin
T ← InitTree(qinit);
while not StopCondition(T , qgoal) do

qrand ← SampleConf(CS) ;
qnear ← NearestNeighbor(qrand, T );
qnew ← Extend(T , qrand, qnear);
if qnew ̸= NULL
and TransitionTest(c(qnear), c(qnew), dnear−new)
and MinExpandControl(T , qnear, qrand) then

AddNewNode(T , qnew);
AddNewEdge(T , qnear, qnew);

end

but also simultaneously satisfy other quality metrics such as
the integral cost.

Algorithm 1 shows the pseudo-code of the T-RRT planner.
Similarly to the Extend version of the basic RRT algorithm
[12], a configuration qrand is randomly sampled. It yields
both the nearest tree node qnear to be extended, and the
extension direction. The extension from qnear is performed
toward qrand with an increment step δ, which has to be small
enough to avoid missing cost picks in the presence of binary
obstacles. Thus, if the new portion of the path leads to a
collision, a null configuration is returned and the extension
fails independently of the associated costs. This extension
process ensures the bias toward unexplored free regions of
the space. The goal of the second stage is to filter irrelevant
configurations regarding the search of low cost paths before
inserting qnew in the tree.

Such filtering is performed by the TransitionTest

function in which the probability of acceptance of a new
configuration is defined by comparing its cost cj relatively
to the cost ci of its parent configuration in the tree. It relies
on the Metropolis criterion, commonly used in stochastic
optimization methods, with a transition probability pij used
to penalize cost-increasing motions and defined as follows:

pij =

{

exp(−
∆c∗ij
K·T

) if ∆c∗ij > 0
1 otherwise.

(1)

Fig. 4. T-RRT constructed on a 2D costmap (left). The transition test favors
the exploration of low-cost regions, resulting in good-quality paths (right).
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explored by an A* algorithm. Extension to manipulation
tasks [18] led to cartesian grids used to compute the end
effector path, assuming the computed path was feasible for
the robot. While such a decoupled approach is sufficient in
the absence of strong environmental constraints, it may fail
in situations where the path planned for the object can not be
followed by the robot because of collisions with workspace
obstacles. Hence, the extension to costmaps defined over the
robot configuration space is desirable.

III. PLANNING LOW COST PATHS

Instead of considering a grid on the workspace, a cost is
defined for each robot configuration as:

c(h, q) =
N
∑

i=1

wici(h, FK(q)),

where q is a configuration and FK the robot’s forward
kinematics function. Given the resulting configuration-space
costmap, we adopt a sampling-based algorithm for com-
puting good-quality paths. Several approaches have been
introduced in former works, in particular RRT variants [6],
[19], [3] in the context of field robotics or more recently
in [10]. In this work, we apply a more general algorithm,
called T-RRT [9], briefly explained below. This section
also presents a new algorithm for local optimization of the
solution through a post-processing phase that also handles
such general cost functions.

A. Costmap exploration

The T-RRT algorithm [9] takes advantage of the perfor-
mance of two methods. First, it benefits from the exploratory
strength of RRT-like planners resulting from their expansion
bias toward large Voronoi regions of the space. Additionally,
it integrates features of stochastic optimization methods,
which apply transition tests to accept or reject potential
states. It makes the search follow valleys and saddle points
of the cost-space in order to compute low-cost solution paths
(see Figure 4). Several criteria can be used to measure the
quality of a path based on its parametric cost function (e.g.
the maximal cost, the average cost, the integral cost along the
path, or the mechanical work). The T-RRT algorithm aims at
finding paths that minimize the mechanical work criterion,

Algorithm 1: Transition-based RRT

input : the configuration space CS;
the cost function c : CS → R

∗

+;
the root qinit and the goal qgoal;

output : the tree T ;

begin
T ← InitTree(qinit);
while not StopCondition(T , qgoal) do

qrand ← SampleConf(CS) ;
qnear ← NearestNeighbor(qrand, T );
qnew ← Extend(T , qrand, qnear);
if qnew ̸= NULL
and TransitionTest(c(qnear), c(qnew), dnear−new)
and MinExpandControl(T , qnear, qrand) then

AddNewNode(T , qnew);
AddNewEdge(T , qnear, qnew);

end

but also simultaneously satisfy other quality metrics such as
the integral cost.

Algorithm 1 shows the pseudo-code of the T-RRT planner.
Similarly to the Extend version of the basic RRT algorithm
[12], a configuration qrand is randomly sampled. It yields
both the nearest tree node qnear to be extended, and the
extension direction. The extension from qnear is performed
toward qrand with an increment step δ, which has to be small
enough to avoid missing cost picks in the presence of binary
obstacles. Thus, if the new portion of the path leads to a
collision, a null configuration is returned and the extension
fails independently of the associated costs. This extension
process ensures the bias toward unexplored free regions of
the space. The goal of the second stage is to filter irrelevant
configurations regarding the search of low cost paths before
inserting qnew in the tree.

Such filtering is performed by the TransitionTest

function in which the probability of acceptance of a new
configuration is defined by comparing its cost cj relatively
to the cost ci of its parent configuration in the tree. It relies
on the Metropolis criterion, commonly used in stochastic
optimization methods, with a transition probability pij used
to penalize cost-increasing motions and defined as follows:

pij =

{

exp(−
∆c∗ij
K·T

) if ∆c∗ij > 0
1 otherwise.

(1)

Fig. 4. T-RRT constructed on a 2D costmap (left). The transition test favors
the exploration of low-cost regions, resulting in good-quality paths (right).
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but also simultaneously satisfy other quality metrics such as
the integral cost.

Algorithm 1 shows the pseudo-code of the T-RRT planner.
Similarly to the Extend version of the basic RRT algorithm
[12], a configuration qrand is randomly sampled. It yields
both the nearest tree node qnear to be extended, and the
extension direction. The extension from qnear is performed
toward qrand with an increment step δ, which has to be small
enough to avoid missing cost picks in the presence of binary
obstacles. Thus, if the new portion of the path leads to a
collision, a null configuration is returned and the extension
fails independently of the associated costs. This extension
process ensures the bias toward unexplored free regions of
the space. The goal of the second stage is to filter irrelevant
configurations regarding the search of low cost paths before
inserting qnew in the tree.
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function in which the probability of acceptance of a new
configuration is defined by comparing its cost cj relatively
to the cost ci of its parent configuration in the tree. It relies
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Algorithm 2: Random Cost Shortcut

input : The Path P;

output : The Path P;

begin
while not StopCondition() do

(q1, q2) ← P .getTwoConfig();
LP ←getSegment(q1, q2) ;
if isValidAndLowerCost(LP, q1, q2) then

P .ReplacePortion(LP, q1, q2) ;

end

This test integrates a self-tuning method in order to
automatically control its filtering strength, and thus ensures a
minimal growth of the tree. Finally, the MinExpandControl

function forces the planner to maintain a minimal rate of
expansion toward undiscovered regions of the space. Thus,
it avoids possible blocking situations during the search. For
more details on T-RRT refer to [9].

B. Smoothing

Traditional post-processing methods (e.g. [7]) are gen-
erally applied to reduce the length and/or to increase the
clearance of a path. We investigate below the extension of
path optimization techniques to the case of a general cost
function. First, we present how the classic shortcut method
can be extended, and secondly, we present a new method
that optimizes locally the path by random perturbations.

1) Random shortcut method: The cost-space extension of
the shortcut method is similar to the original approach, but
the cost of the path is tested together with collisions and kine-
matic constraints. The method is sketched in Algorithm 2. At
each iteration, the new path portion replaces the current one
only if it is feasible and of lower cost.

This method reduces the length of the input path while
improving its quality, and usually converges rapidly to a
local minimum. However when applied to more general cost
functions to be optimized, the fact that the optimization is
restricted inside the convex hull defined by the set of points
on the path appears to be a limiting factor. Hence, it is not
sufficient to deform the path towards the low-cost valleys of
the costmap.

2) Random path perturbation: The goal of this method
is to avoid the path convex hull limitation. The path is
iteratively deformed by moving a point qperturb randomly
selected on the path in a direction determined by a random
sample qrand. This process (depicted in Figure 5) creates a
deviation from the current path, The new segment replaces
the current segment if it has a lower cost. Collision checking
and kinematic constraints verification can be performed be-
fore or after cost comparison depending on the computational
cost of both processes.

The first step of this method (sketched in Algorithm 3)
is to select a configuration qperturb. This selection is biased
to higher cost segments. For this, path portions are sorted
according to their cost, and high-cost portions have higher

Algorithm 3: Random Path Perturbation

input : The Path P;

output : The Path P;

begin
while not StopCondition() do

qperturb ← P .shootRandConfigOnPath();
(qnear1, qnear2) ← P .getNeigh (qperturb, step);
qrand ← shootRandDirection() ;
qnew ← Expand(qperturb, qrand, step) ;
LP1 ←getSegment (qnear1, qnew) ;
LP2 ←getSegment (qnew, qnear2) ;
LP ← LP1 + LP2 ;
if isValidAndLowerCost(LP, qnear1, qnear2)
then

P .ReplacePortion (LP, qnear1, qnear2, );

end

q rand

q new

q perturb

q near1

q near2
q init

q goal

Fig. 5. The random path perturbation does not restrict the new path to be
inside the convex hull defined by the path’s set of points enabling a more
global exploration of the input path neighborhood.

chances of being picked for optimization. In a second phase
an extension toward a random direction qrand is performed
to select a configuration qnew inside the path’s neighborhood.

The step parameter 1 controls the amplitude of the local
perturbations. First it is used to determine the distance
between the two configuration named qnear1 and qnear2 that
are selected to be both at step/2 of qperturb. It also controls
the deviation of qnew from the current path, chosen as a
percentage of the step parameter. High values of the step
parameter tend to deform strongly the path while low values
tend to refine locally the solution.

This perturbation method explores more globally the path
neighborhood, but usually outputs longer paths. Therefore
It is complementary to the shortcut method that tends to
shorten the path. Thus, in the post-processing phase, it may
be suitable to use a combination of the two methods in
order to obtain smooth and low-cost solutions. Also note
that these methods can be used to optimize an input path
resulting from the RRT search that does not take cost into
account. This is illustrated in the results presented below

1The step parameter can be set at a certain percentage of the path length,
in the experimental results, we use 10% which refines locally the path in a
convenient way. The distance between qnew and qperturb is set to be at
25% of step.
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chances of being picked for optimization. In a second phase
an extension toward a random direction qrand is performed
to select a configuration qnew inside the path’s neighborhood.

The step parameter 1 controls the amplitude of the local
perturbations. First it is used to determine the distance
between the two configuration named qnear1 and qnear2 that
are selected to be both at step/2 of qperturb. It also controls
the deviation of qnew from the current path, chosen as a
percentage of the step parameter. High values of the step
parameter tend to deform strongly the path while low values
tend to refine locally the solution.

This perturbation method explores more globally the path
neighborhood, but usually outputs longer paths. Therefore
It is complementary to the shortcut method that tends to
shorten the path. Thus, in the post-processing phase, it may
be suitable to use a combination of the two methods in
order to obtain smooth and low-cost solutions. Also note
that these methods can be used to optimize an input path
resulting from the RRT search that does not take cost into
account. This is illustrated in the results presented below

1The step parameter can be set at a certain percentage of the path length,
in the experimental results, we use 10% which refines locally the path in a
convenient way. The distance between qnew and qperturb is set to be at
25% of step.
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This path perturbation 
mechanism can 
generate positions 
outside the convex hull 
of the path, allowing 
better global 
optimization than 
alternatives which 
remain within the 
convex hull. 
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shorten the path. Thus, in the post-processing phase, it may
be suitable to use a combination of the two methods in
order to obtain smooth and low-cost solutions. Also note
that these methods can be used to optimize an input path
resulting from the RRT search that does not take cost into
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Simulated Handoff Results

that also compare the computational performance and path
quality obtained with global T-RRT costmap planning and
local path-optimization of RRT solutions.

IV. EXPERIMENTAL RESULTS

The T-RRT algorithms and the path smoothing methods
have been implemented into the path planning software
Move3D [16]. The experiments reported below have been
performed on a 2.6GHz INTEL processor. All performance
results summarized in the tables correspond to average
values computed over 10 runs.

The scenario illustrates a planning problem involving torso
and arm motions of the mobile Justin robot from DLR [4].
Justin hands an object to the human in a kitchen environment
cluttered by ceiling lamps. The resulting motion planning
problem involves 10 active DoFs that enable the robot to
bend the torso while moving the arm in order to avoid
the ceiling lamps. Taking into account the HRI constraints
induces high-dimensional costmaps to be explored for gen-
erating safe and legible robot motions.

In Figure 6, the three costmaps are taken separately into
account during motion planning resulting in three different
solutions to the same problem. Figure 6(c) illustrates the
effect of the distance criterion on the robot motion. As one
can see, the resulting path pushes the robot farther from
the human and causes a safer behavior compared to the
direct path generated by the ”standard planner”. Similarly in
Figure 6(d), with visibility cost function, the robot moves
the object in a way that it stays as visible as possible
to the human. Finally considering the reachability criterion
in Figure 6(e), the robot moves the object on a path that
maximizes the possibility for the human to reach the object
in a comfortable way.

The total planning time including post-processing and the
integral cost of solutions before and after optimization are
compared on those three costmaps in Table I. The exploration
phase using either a standard RRT or T-RRT are compared.
The reported times include a 4sec post-processing performed
by iteratively interleaving runs of the perturbation and
shortcut methods introduced in section III.

T-RRT planning on the first costmap improves drastically
the cost of the solutions because the solution path with
low integral cost implies a large detour from the standard
RRT solution. As one can see on Figure 6(d) and 6(e)
low cost object translation paths on the visibility costmap

TABLE I

RUNS ON AN ELEMENTARY COSTMAP

Time(sec.) Cost(Before) Cost(After)

Dist.
RRT 8.57 212 111
T-RRT 13.31 45 18

Visib.
RRT 8.64 294 186
T-RRT 7.05 251 176

Reach.
RRT 8.39 158 89
T-RRT 15.91 117 62

(a) Init (b) Goal

(c) Distance Cost

(d) Visbility Cost

(e) Reachability Cost

Fig. 6. Justin robot in a handover task. The workspace is cluttered by
object on the table and ceiling lamps which make a difficult motion planning
problem. The three cost functions lead to three cost-spaces which can be
taken separately as input of the proposed sampling-based costmap planner.

that also compare the computational performance and path
quality obtained with global T-RRT costmap planning and
local path-optimization of RRT solutions.

IV. EXPERIMENTAL RESULTS

The T-RRT algorithms and the path smoothing methods
have been implemented into the path planning software
Move3D [16]. The experiments reported below have been
performed on a 2.6GHz INTEL processor. All performance
results summarized in the tables correspond to average
values computed over 10 runs.

The scenario illustrates a planning problem involving torso
and arm motions of the mobile Justin robot from DLR [4].
Justin hands an object to the human in a kitchen environment
cluttered by ceiling lamps. The resulting motion planning
problem involves 10 active DoFs that enable the robot to
bend the torso while moving the arm in order to avoid
the ceiling lamps. Taking into account the HRI constraints
induces high-dimensional costmaps to be explored for gen-
erating safe and legible robot motions.

In Figure 6, the three costmaps are taken separately into
account during motion planning resulting in three different
solutions to the same problem. Figure 6(c) illustrates the
effect of the distance criterion on the robot motion. As one
can see, the resulting path pushes the robot farther from
the human and causes a safer behavior compared to the
direct path generated by the ”standard planner”. Similarly in
Figure 6(d), with visibility cost function, the robot moves
the object in a way that it stays as visible as possible
to the human. Finally considering the reachability criterion
in Figure 6(e), the robot moves the object on a path that
maximizes the possibility for the human to reach the object
in a comfortable way.

The total planning time including post-processing and the
integral cost of solutions before and after optimization are
compared on those three costmaps in Table I. The exploration
phase using either a standard RRT or T-RRT are compared.
The reported times include a 4sec post-processing performed
by iteratively interleaving runs of the perturbation and
shortcut methods introduced in section III.

T-RRT planning on the first costmap improves drastically
the cost of the solutions because the solution path with
low integral cost implies a large detour from the standard
RRT solution. As one can see on Figure 6(d) and 6(e)
low cost object translation paths on the visibility costmap
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RRT 8.64 294 186
T-RRT 7.05 251 176

Reach.
RRT 8.39 158 89
T-RRT 15.91 117 62
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(e) Reachability Cost

Fig. 6. Justin robot in a handover task. The workspace is cluttered by
object on the table and ceiling lamps which make a difficult motion planning
problem. The three cost functions lead to three cost-spaces which can be
taken separately as input of the proposed sampling-based costmap planner.
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Fig. 7. A complete object hand over example scenario. The robot has the
object in its hand. The human is sitting on a chair looking away from the
robot. While the motion planned with a standard planner does not consider
the presence of the human, the one planned by taking into account the three
constraints generates a comfortable motion. By following this path the robot
stays as visible as possible, as sufficiently far as possible and the object is
comfortable to reach by the human.

TABLE II

RUNS ON THE COMBINATION OF THE 3 CONSTRAINTS

Time(sec.) Cost(Before) Cost(After)

RRT 8.65 179 120
T-RRT 16.69 82 54

and reachability constmap are geometrically closer to the
standard RRT path of Figure 7(a). This explains the less
significant gain found of using the cost-space planning in
Table I. Finally, Table II similarly reports the results obtained
when considering the combination of the three costmaps the
solution obtained realizes a good compromise between the
three constraints illustrated on Figure 7.

V. CONCLUSION

We have presented a novel cost-space planning approach
for computing human-aware motions considering HRI con-
straints. The proposed T-RRT algorithm bridges the gap
between low dimensional costmap planning and sampling-
based motion planning. We have also described a path post-
processing technique that can be used to further improve
T-RRT solutions, or for the local optimization of paths
computed without considering the HRI constraints.

Future work concerns the extension of the proposed frame-
work to more general HRI constraints and better characteriz-
ing the desired properties of human-aware motions. Currently
the planner considers a static human model that does not
account for possible human motions during the execution of
a the robot path. We expect to enhance our models with a
new framework to overcome this limitation. We also plan to
further validate the approach through experiments with real
robot systems.
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Application to our Project
•  Our end effector position is tied 

to the current point along the 
cut 
 

•  One redundant joint allows free 
elbow placement which could be 
optimized based on human 
interaction constraints. 
 

•  However, the runtimes of their 
planning algorithm are around 8 
seconds, so this may not work 
directly in our use case.  



Application to our Project
•  One possibility is at the start and 

completion of the arm’s milling 
operation the arm must engage and 
disengage from the bone.  
 

•  These paths can potentially be 
planned at a high level using an 
algorithm such as this one 
 

•  Constraints can be evaluated based 
on comfort and safety metrics given 
the location and position of the 
surgeon, patient, etc.  



 Kroger, reflexxes motion 
libraries motivation

•  Evaluating approaches 
to handling the 
additional degree of 
freedom in the KUKA 
iiwa arm 

•  Methods underlying the 
reflexxes motion library 
Type IV provide a 
possible option for our 
use case. 



Reflexxes Motion 
Planning Library
 
The key to the algorithms 
are that they solve for the 
only minimum time 
solution to the planning 
problem. 
 
Therefore, reflexxes finds a 
closed form solution even 
in devices with redundant 
degrees of freedom.  

Opening the Door to New Sensor-Based Robot

Applications — The Reflexxes Motion Libraries

Torsten Kröger, Reflexxes GmbH, Germany

Abstract— This paper introduces the Reflexxes Motion Li-
braries and describes, how they open doors for next generation
robot motion controllers. When robots become capable to
perform sensor-guided and sensor-guarded motions, there is no
predefined path anymore, and motions have to be calculated on-
line, that is, during the motion. The Reflexxes Motion Libraries
calculate jerk-limited motions within one control cycle only
(typically 1 ms or less). This way, robots can instantaneously
react to unforeseen sensor events, which opens the door to a
huge number of new robot capabilities and fundamentally new
motion control features. For instance: unforeseen switchings of
coordinate frames, unforeseen switchings of control state spaces,
deterministic and instantaneous reactions to sensor signals, safe
and stable reactions to sensor failures, simple visual servo
control, and stable switched-system control. All these features
are important for the execution of sensor-based robot motions
and to realize new applications as will be outlined in this paper.

I. INTRODUCTION

The Reflexxes Motion Libraries are designed to achieve
new opportunities in sensor-based robot motion control
opening the door to new applications, safe human-robot
interaction, and advanced robot motion capabilities. The
three key features of these libraries are:

(1) Robot motions can be calculated from arbitrary initial
states of motion (i.e., during any motion).

(2) New motions are calculated within one low-level
control cycle (typically within one millisecond or
less).

(3) The interface is very simple and clear, such that it can
easily be integrated in existing systems.

The libraries presented here are the outcome of a long-
term research project of the robotics research groups at
Braunschweig University of Technology [1] and Stanford
University [2]. Based on these former works, the Reflexxes
Company [3] now works on technology transfer projects
to bring these new concepts widely into practice and to
contribute to the future advancement of robotic systems.
First major robot manufacturers are already using the fully
documented and tested software libraries in their products.

This communication paper outlines the new control fea-
tures and robot motion capabilities that become possible
now. Furthermore, it describes different types of on-line
trajectory generation (OTG) algorithms that are contained
in the Reflexxes Motion Libraries.

Reflexxes GmbH, Sandknoell 7, D-24805 Hamdorf, Germany,
http://www.reflexxes.com

Fig. 1. The interface of all Reflexxes Motion Libraries is very simple and
can easily be integrated into existing systems. Based on the current state
of motion and the kinematic motion constraints, a new state of motion
is calculated with lies exactly on the time-optimal trajectory to reach the
desired target state of motion. All input values can change arbitrarily based
on sensor signals and even discontinuously, and a steady jerk-limited motion
trajectory is always guaranteed at the output.

II. NEW ROBOT MOTION CONTROL FEATURES

Based on the OTG framework, the following new robot
motion control features can be realized with the Reflexxes

Motion Libraries:

A. Unforeseen switchings of coordinate frames

B. Unforeseen switchings of control state spaces

C. Deterministic, instantaneous reactions to sensor signals

D. Safe and stable reactions to sensor failures

E. Simple visual servo control

F. Stable switched-system control

All these features let robots instantaneously react to unfore-

seen events and enable new opportunities for sensor-based
robot motion control — and thus: open the door to a wide
range of new robot applications.

The Basic Concept

A number of former works [4]–[6] introduced the basic
framework of on-line trajectory generation algorithms, whose
interface is illustrated in Fig. 1. Given an arbitrary initial
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Unfortunately, the algorithm 
solutions themselves are not 
presented in this paper. 
 
Some of the underlying 
algorithms, information, and 
implementation may be 
available via the book written 
by Thorsten Kroger, On-Line 
Trajectory Generation in 
Robotic Systems3. 
 
This review will focus on 
capabilities over algorithms 
in accordance with the paper. 
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on sensor signals and even discontinuously, and a steady jerk-limited motion
trajectory is always guaranteed at the output.
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Transfer of Control

Fig. 2. XY-plot of a two-DOF path, whose trajectory is executed w.r.t.
reference frame A (solid line). Right after the indicated sensor event (dotted
line), frame B acts as reference frame for the motion controller.

state of motion, kinematic motion constraints, and a desired
target state of motion consisting of a position and a target
velocity vector, a new state of motion is calculated for the
current control cycle. This state of motion lies exactly on the
time-optimal trajectory to reach the desired target state. The
calculation is so fast that the resulting values can be used as
set-points for lower-level controllers within the same control
cycle, such that instantaneous deterministic reactive motions
are possible.

A. Unforeseen Switchings of Reference Frames

As motion set-points can be generated within one control
cycle, it becomes — for the first time — possible to switch the
reference coordinates instantaneously at unforeseen instants
while a jerk-limited trajectory is always guaranteed, and
some degrees of freedom may even be controlled by closed-
loop controllers (e.g., force/torque or visual servo control).
This is very useful for tasks, for which the reference frame
of a motion is not known beforehand or is sensor-dependant.
To give a simple illustrative example, Fig. 2 shows the planar
path of a two-degree-of-freedom trajectory, whose first part
is executed w.r.t. reference frame A, and at the instant of
a sensor-event (M2000), the switching to reference frame B
occurs. When implementing real-world robot manipulation
tasks, this switching capability is essential for the sensor-
based execution of Motion/Manipulation Primitives [7]: here,
the execution of a single primitive ends at an arbitrary
(unpredictable) state of motion, and the succeeding primitive
has to start from this state, but this primitive may use another
reference frame.

B. Unforeseen Switchings of Control State Spaces

Analogous to the new on-line frame switching capability,
robot motion controllers become furthermore able to switch

Fig. 3. An r-ϕ-manipulator, which executes a Cartesian motion command,
that is unexpectedly interrupted at the position Cartp⃗ = (50, 450) mm
(solid line). Immediately after the interruption, the motion is controlled in
joint space (dashed line) until the target state of motion has been reached.

the control state space from one control cycle to another. As
a very simple example of this new capability, Fig. 3 depicts
a simple r-ϕ-manipulator for illustration purposes. The first
part of the illustrated path is executed by a Cartesian motion
controller, and at t = 1830 ms, an unpredictable sensor
event happens. Form the control cycle on, at which this
event is detected, the motion is continued by the joint space
controller, which receives its set-points from the Reflexxes

Motion Library that instantaneously provides a joint space
trajectory. As a result, jerk-limited trajectories can be gen-
erated in any moment of switching and continuous motions
are guaranteed in any situation.

C. Deterministic, Instantaneous Reactions to Sensor Signals

Using a Reflexxes Motion Library enables robots and
systems to perform a kind of robotic reflex. As the motion
generation library is integrated in the inner most control
loops, robot reactions to unforeseen events can happen
instantaneously. In the moment an event is triggered by a
sensor signal, safe, deterministic, and instantaneous reaction
strategies can be configured and executed, such that colli-
sions can be prevented much easier and with shorter reac-
tion times or a switching from sensor-guided to trajectory-
following motion control (or vice versa) can be performed
(cf. Fig. 4). As the OTG algorithm always calculates the
(only) minimum-time solution, it is guaranteed that robot
systems always behave deterministically: the same input
values always lead to the same output values.

Fig. 4. The Reflexxes Motion Libraries enable instantaneous switchings
between sensor-guided robot and trajectory-following motions (cf. [4], [5]).
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current control cycle. This state of motion lies exactly on the
time-optimal trajectory to reach the desired target state. The
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set-points for lower-level controllers within the same control
cycle, such that instantaneous deterministic reactive motions
are possible.
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some degrees of freedom may even be controlled by closed-
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This is very useful for tasks, for which the reference frame
of a motion is not known beforehand or is sensor-dependant.
To give a simple illustrative example, Fig. 2 shows the planar
path of a two-degree-of-freedom trajectory, whose first part
is executed w.r.t. reference frame A, and at the instant of
a sensor-event (M2000), the switching to reference frame B
occurs. When implementing real-world robot manipulation
tasks, this switching capability is essential for the sensor-
based execution of Motion/Manipulation Primitives [7]: here,
the execution of a single primitive ends at an arbitrary
(unpredictable) state of motion, and the succeeding primitive
has to start from this state, but this primitive may use another
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Analogous to the new on-line frame switching capability,
robot motion controllers become furthermore able to switch
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a very simple example of this new capability, Fig. 3 depicts
a simple r-ϕ-manipulator for illustration purposes. The first
part of the illustrated path is executed by a Cartesian motion
controller, and at t = 1830 ms, an unpredictable sensor
event happens. Form the control cycle on, at which this
event is detected, the motion is continued by the joint space
controller, which receives its set-points from the Reflexxes

Motion Library that instantaneously provides a joint space
trajectory. As a result, jerk-limited trajectories can be gen-
erated in any moment of switching and continuous motions
are guaranteed in any situation.

C. Deterministic, Instantaneous Reactions to Sensor Signals

Using a Reflexxes Motion Library enables robots and
systems to perform a kind of robotic reflex. As the motion
generation library is integrated in the inner most control
loops, robot reactions to unforeseen events can happen
instantaneously. In the moment an event is triggered by a
sensor signal, safe, deterministic, and instantaneous reaction
strategies can be configured and executed, such that colli-
sions can be prevented much easier and with shorter reac-
tion times or a switching from sensor-guided to trajectory-
following motion control (or vice versa) can be performed
(cf. Fig. 4). As the OTG algorithm always calculates the
(only) minimum-time solution, it is guaranteed that robot
systems always behave deterministically: the same input
values always lead to the same output values.

Fig. 4. The Reflexxes Motion Libraries enable instantaneous switchings
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state of motion, kinematic motion constraints, and a desired
target state of motion consisting of a position and a target
velocity vector, a new state of motion is calculated for the
current control cycle. This state of motion lies exactly on the
time-optimal trajectory to reach the desired target state. The
calculation is so fast that the resulting values can be used as
set-points for lower-level controllers within the same control
cycle, such that instantaneous deterministic reactive motions
are possible.
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As motion set-points can be generated within one control
cycle, it becomes — for the first time — possible to switch the
reference coordinates instantaneously at unforeseen instants
while a jerk-limited trajectory is always guaranteed, and
some degrees of freedom may even be controlled by closed-
loop controllers (e.g., force/torque or visual servo control).
This is very useful for tasks, for which the reference frame
of a motion is not known beforehand or is sensor-dependant.
To give a simple illustrative example, Fig. 2 shows the planar
path of a two-degree-of-freedom trajectory, whose first part
is executed w.r.t. reference frame A, and at the instant of
a sensor-event (M2000), the switching to reference frame B
occurs. When implementing real-world robot manipulation
tasks, this switching capability is essential for the sensor-
based execution of Motion/Manipulation Primitives [7]: here,
the execution of a single primitive ends at an arbitrary
(unpredictable) state of motion, and the succeeding primitive
has to start from this state, but this primitive may use another
reference frame.

B. Unforeseen Switchings of Control State Spaces

Analogous to the new on-line frame switching capability,
robot motion controllers become furthermore able to switch

Fig. 3. An r-ϕ-manipulator, which executes a Cartesian motion command,
that is unexpectedly interrupted at the position Cartp⃗ = (50, 450) mm
(solid line). Immediately after the interruption, the motion is controlled in
joint space (dashed line) until the target state of motion has been reached.

the control state space from one control cycle to another. As
a very simple example of this new capability, Fig. 3 depicts
a simple r-ϕ-manipulator for illustration purposes. The first
part of the illustrated path is executed by a Cartesian motion
controller, and at t = 1830 ms, an unpredictable sensor
event happens. Form the control cycle on, at which this
event is detected, the motion is continued by the joint space
controller, which receives its set-points from the Reflexxes

Motion Library that instantaneously provides a joint space
trajectory. As a result, jerk-limited trajectories can be gen-
erated in any moment of switching and continuous motions
are guaranteed in any situation.

C. Deterministic, Instantaneous Reactions to Sensor Signals

Using a Reflexxes Motion Library enables robots and
systems to perform a kind of robotic reflex. As the motion
generation library is integrated in the inner most control
loops, robot reactions to unforeseen events can happen
instantaneously. In the moment an event is triggered by a
sensor signal, safe, deterministic, and instantaneous reaction
strategies can be configured and executed, such that colli-
sions can be prevented much easier and with shorter reac-
tion times or a switching from sensor-guided to trajectory-
following motion control (or vice versa) can be performed
(cf. Fig. 4). As the OTG algorithm always calculates the
(only) minimum-time solution, it is guaranteed that robot
systems always behave deterministically: the same input
values always lead to the same output values.

Fig. 4. The Reflexxes Motion Libraries enable instantaneous switchings
between sensor-guided robot and trajectory-following motions (cf. [4], [5]).
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joint based control based 
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previous slide. 



Switching between 
sensor-guided and 
trajectory-following 
motions

Fig. 5. Position, velocity, and acceleration progressions of a six-degree-
of-freedom robot using a Cartesian motion controller. At t = 662 ms,
a sensor failure is detected, and the controller immediately switches from
sensor-guided to trajectory following control in order to keep the system
stable (cf. Fig. 6 and [8]).

D. Safe and Stable Reactions to Sensor Failures

Safe and task-dependent reactions to sensor failures are
very essential when sensors are integrated in robot motion
controllers. Based on a Reflexxes Motion Library, a safe and
continuous motion can be calculated in the same control
cycle, at which the failure is detected (e.g., force/torque
sensor malfunction or vision system malfunction). This way,
safe jerk-limited motions can be guaranteed in any situa-
tion [8]. For a simple illustration, Fig. 5 shows a robot
motion trajectory, which first is generated by a closed-loop
controller (sensor-guided) and at the control cycle at t =

662 ms, a sensor failure is detected and the Reflexxes Motion

Fig. 6. Corresponding to Fig. 5, this diagram illustrates the six trajectories
in their velocity-acceleration plane from the moment of switching on (i.e.,
in the interval 662 ms ≤ t ≤ 2816 ms). All trajectories terminate in
an equilibrium point of the underlying control loops, which is an essential
feature to assure overall stability.

Library instantaneously provides set-points for lower-level
controllers that lead to a safe, stable, and continuous robot
motion.

E. Simple Visual Servo Control

The usage of computer vision systems in robotic appli-
cations leads to significant advantages and lets us realize
new applications. Instead of using cameras only for the
calculation of robot target positions, it will be even more
advantageous if the signals of cameras and image processing
systems are fed to low-level controllers (visual servo control).
Problems can appear if the vision system does not work
properly (e.g., because a human or an obstacle accidently
covers one or more of the cameras). Using one of the
Reflexxes Motion Libraries as an intermediate layer, that
is, between the image processing system and the low-level
controllers, leads to the important advantage that continuous
motions can always be guaranteed (even if the vision system
does not work in real-time or at low sample rates).

F. Stable Switched-System Control

The integration of multiple sensors of one or different
kinds generally leads to more opportunities for for robot
motion controllers. In order to use sensors for sensor-guided
and sensor-guard robot tasks, their signals are used in the
feedback loops of low-level controllers, such that a hybrid
switched-system is established [8]. Keeping such systems
stable is a difficult task. By using the Reflexxes Motion

Library as one control submodule in the hybrid switched
system, this module can always take over control (i.e., in any
arbitrary state of motion) and generate set-points for lower-
level controllers that guide the system to a safe equilibrium
point. To illustrate this essential feature in a simple way,
Fig. 6 exemplarily shows the motion of Fig. 5 in its velocity-
acceleration plane from the moment of switching on.
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Application to our Project
•  Key concerns for our project: 

–  Handling the additional degree of 
freedom in the KUKA iiwa arm 

–  Implementing a tight control loop 
with an optical tracker. 
 

•  The underlying implementation of 
Reflexxes motion library Type IV 
may provide a viable option for 
our use case. 
 

•  We are using reflexxes via the V-
REP simulation suite, which uses 
it directly. 

•  However, the library is no longer 
available directly because the 
company was sold to Google. 
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•  3. Kroger T. On-line trajectory generation in robotic systems. First ed. Berlin, 
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Opening the Door to New Sensor-Based Robot

Applications — The Reflexxes Motion Libraries

Torsten Kröger, Reflexxes GmbH, Germany

Abstract— This paper introduces the Reflexxes Motion Li-
braries and describes, how they open doors for next generation
robot motion controllers. When robots become capable to
perform sensor-guided and sensor-guarded motions, there is no
predefined path anymore, and motions have to be calculated on-
line, that is, during the motion. The Reflexxes Motion Libraries
calculate jerk-limited motions within one control cycle only
(typically 1 ms or less). This way, robots can instantaneously
react to unforeseen sensor events, which opens the door to a
huge number of new robot capabilities and fundamentally new
motion control features. For instance: unforeseen switchings of
coordinate frames, unforeseen switchings of control state spaces,
deterministic and instantaneous reactions to sensor signals, safe
and stable reactions to sensor failures, simple visual servo
control, and stable switched-system control. All these features
are important for the execution of sensor-based robot motions
and to realize new applications as will be outlined in this paper.

I. INTRODUCTION

The Reflexxes Motion Libraries are designed to achieve
new opportunities in sensor-based robot motion control
opening the door to new applications, safe human-robot
interaction, and advanced robot motion capabilities. The
three key features of these libraries are:

(1) Robot motions can be calculated from arbitrary initial
states of motion (i.e., during any motion).

(2) New motions are calculated within one low-level
control cycle (typically within one millisecond or
less).

(3) The interface is very simple and clear, such that it can
easily be integrated in existing systems.

The libraries presented here are the outcome of a long-
term research project of the robotics research groups at
Braunschweig University of Technology [1] and Stanford
University [2]. Based on these former works, the Reflexxes
Company [3] now works on technology transfer projects
to bring these new concepts widely into practice and to
contribute to the future advancement of robotic systems.
First major robot manufacturers are already using the fully
documented and tested software libraries in their products.

This communication paper outlines the new control fea-
tures and robot motion capabilities that become possible
now. Furthermore, it describes different types of on-line
trajectory generation (OTG) algorithms that are contained
in the Reflexxes Motion Libraries.

Reflexxes GmbH, Sandknoell 7, D-24805 Hamdorf, Germany,
http://www.reflexxes.com

Fig. 1. The interface of all Reflexxes Motion Libraries is very simple and
can easily be integrated into existing systems. Based on the current state
of motion and the kinematic motion constraints, a new state of motion
is calculated with lies exactly on the time-optimal trajectory to reach the
desired target state of motion. All input values can change arbitrarily based
on sensor signals and even discontinuously, and a steady jerk-limited motion
trajectory is always guaranteed at the output.

II. NEW ROBOT MOTION CONTROL FEATURES

Based on the OTG framework, the following new robot
motion control features can be realized with the Reflexxes

Motion Libraries:

A. Unforeseen switchings of coordinate frames

B. Unforeseen switchings of control state spaces

C. Deterministic, instantaneous reactions to sensor signals

D. Safe and stable reactions to sensor failures

E. Simple visual servo control

F. Stable switched-system control

All these features let robots instantaneously react to unfore-

seen events and enable new opportunities for sensor-based
robot motion control — and thus: open the door to a wide
range of new robot applications.

The Basic Concept

A number of former works [4]–[6] introduced the basic
framework of on-line trajectory generation algorithms, whose
interface is illustrated in Fig. 1. Given an arbitrary initial

(a) Distance costmap (b) Visibility costmap

Fig. 2. The costmaps model the distance and visibility constraint by
assigning to each point of the cartesian space an HRI cost. The safety
cost function is inversely proportional to its distance to the human while
the visibility cost function reasons about the field of view modeled by the
gaze direction.

Then, we describe post-processing methods that can be
applied to further improve path quality over a configuration-
space costmap. Finally, experimental results are presented to
demonstrate the efficacy of the approach (Section IV).

II. HUMAN-ROBOT INTERACTIONS CONSTRAINTS

The presence of humans in a robot workspace brings
new constraints to navigation and manipulation planning. In
this work, several examples of important constraints have
been taken into account, such as safety, visibility and arm
comfort which are further detailed. These constraints have
to be considered as examples of the broad variety of HRI
properties that can be taken as input of our planner.

The first constraint depicted in Figure 2, called distance
constraint, mainly focuses on ensuring the safety of the
interaction by controlling the distance between the robot and
the human. Only an approximate bounding volume of the
human body without considering the arm geometry is used
for the distance computation. This safety constraint, which
is reasonable, given that the focus is set on preventing any
risk of harmful collision between the human and the robot,
keeps the robot away from the head and body. Moreover, it
has been also shown in proxemics theory [8] that violation
of an intimate space radius generates a feeling of intrusion.
Therefore the farther a point is situated from the human, the
lesser its HRI safety cost is, until some maximum threshold
at which it becomes null.

The second constraint, called visibility constraint, has the
purpose of limiting the human’s surprise as the robot is mov-
ing in the workspace. A human will feel less surprise if the
robot stays in sight resulting in a safer and more comfortable
interaction as shown in [17]. Thus each workspace point
has a cost proportional to the angle between the gaze and its
position in Cartesian space as illustrated in Figure 2.

The third constraint, called arm comfort constraint, was
introduced in [18] to compute object transfer position in hand
over tasks with the human. This section presents a refined
description of this constraint, that is also considered by the

motion planner in order to generate paths for which it is easy
for the human to access an object held by the robot at any
time. For this the robot must reason on humans’ accessibility
and kinematics. The presupposed human reaching volume
can be preprocessed using generalized inverse kinematics
(GIK). For each position inside the reaching volume, the
torso configuration is determined to stay as close as possible
to a given resting posture. Collision detection against the
environment is used to further validate those postures. Then,
to each valid reaching posture is assigned a comfort cost as
shown in Figure 3 by using the predictive human-posture
cost function introduced in [14]. The comfort is estimated
by the sum of the three functions:

• The first function computes a joint angle distance from
a resting posture qN to the actual posture where q is
the configuration of the human:

f1 =
∑DOF

i=1
wi(qi − qNi )2

• The second considers the potential energy of the arm
which is defined by the difference of the arm and
forearm heights with those of a resting posture (∆zi)
pondered by an estimation of the arm and forearm
mass mi :

f2 =
∑2

i=1
(mig)2(∆zi)2

• The third penalizes configuration close to joint limits.
To each joint corresponds a minimum and a maximum
limit and the distance to the closest limit (∆qi) is taken
into account in the cost function as follows:

f3 =
∑DOF

i=1
γi∆q2i

Fig. 3. Arm comfort: Four poses that vary from comfortable and natural
on the upper left corner to uncomfortable and uneasy postures on the lower
right corner, the color gradient expresses the corresponding cost function
value.
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Abstract— This paper addresses the motion planning problem
while considering Human-Robot Interaction (HRI) constraints.
The proposed planner generates collision-free paths that are
acceptable and legible to the human. The method extends our
previous work on human-aware path planning to cluttered
environments. A randomized cost-based exploration method
provides an initial path that is relevant with respect to HRI
and workspace constraints. The quality of the path is further
improved with a local path-optimization method. Simulation
results on mobile manipulators in the presence of humans
demonstrate the overall efficacy of the approach.

I. INTRODUCTION

In an environment where robots and humans co-exist and
work together, robot motions need to explicitly take into
account the presence of humans. Therefore, hardware as well
as software components need to be designed by considering
human’s safety [5], [15]. Besides ensuring safety in robot
hardware with compliant designs [20], [1], the motions of
the robot need to be planned in a “human-aware” manner.

In previous work [17], [18], we have presented a mo-
tion planner that explicitly takes into account human-robot
constraints (e.g. their relative distance, the human’s field of
view and posture) to synthesize navigation and manipulation
motions. This planner was based on human-robot user stud-
ies [11], as well as on existing human-human space sharing
theories [8]. The proposed method was to our knowledge the
first to investigate a “planning” approach to the problem of
human-robot intelligent space sharing. HRI constraints were
represented through cost functions depending respectively on
the human kinematic model, field of view and accessibility.
This representation of the problem led to costmaps defined
over the workspace. Motion planning was solved using grid
search techniques for planning object motions, and general-
ized inverse kinematics for the robot to follow the planned
object path. While this decoupled approach is sufficient in
the absence of strong workspace constraints, it may fail in
cluttered environments such as shown in Figure 1.

In this paper we extend the capabilities of the planner
using sampling-based planning algorithms, which enable
planning in the robot configuration space and finding human-
aware motions in cluttered environments. Sampling-based
path planning methods [2], [13], are able to handle complex
problems in high-dimensional spaces. However, they usually
operate in a binary configuration space, aiming to find

Fig. 1. A cluttered environment such as a home provides a difficult
workspace for robot motion planning in which the human presence adds
new constraints. In this paper we propose to use a sampling-based method
to achieve high-dimensional optimal planning regarding cost functions
designed to take explicitly the human into account.

feasible collision-free solutions rather than optimal paths.
Moreover, due to their probabilistic nature, solution paths
have generally low quality, and a post-processing phase is
commonly used to improve them locally regarding specific
criteria (e.g. length, clearance). The proposed method relies
on the recent algorithm T-RRT [9], which computes good-
quality paths given a general cost-function defined over the
robot configuration space. The solutions provided by T-
RRT are further improved using local optimization methods
also described in the paper. Finally, we present a refined
description of the HRI constraints, in particular the ”arm
comfort constraint” only used in [18] for computing the
object transfer point of hand over tasks while considered
here for planning robot motions.

The paper is organized as follows. Next section describes
the model of the HRI constraints. Section III presents the
path planning method. First, the T-RRT algorithm, which is
used to find a first good-quality path, is briefly explained.


