# Two Papers on Photoacoustic Dyes

**Tim Mullen** 

# **Overview of Project**

- Looking for candidate dyes for photoacoustic neuro-imaging
  - Voltage and pH changes in neurons correlate to brain signal
  - Empirical characterization of photoacoustic response for variety of dyes
  - Photoacoustic imaging has attractive spatial and temporal resolution

#### **Two Papers on Photoacoustic Dyes**

- Functional photoacoustic microscopy of pH (pH)
  - Muhammad Rameez Chatni, Junjie Yao, Amos Danielli, et. al in Journal of Biomedical Optics, 2011
- Design, Synthesis, and Imaging of an Activatable Photoacoustic Probe (probe)
  - Jelena Levi, Sri Rajasekhar Kothapalli, Te-Jen Ma, et. al in *Journal of American Chemical Society*, 2010

## pH: Relevance

• Evidence that pH changes are detectable via photoacoustic imaging, through tissue

# pH: Goal

- Use a commercially available pH sensitive fluorescent dye (SNARF-5F) to measure absolute pH photoacoustically (a first!)
  - Limit of fluorescence is ~ 100 micrometers, and MRI is a non-optimal technique

# **pH: Procedure**

- .1 mM SNARF-5F dye solutions in 6.78, 7.45, and 7.80 pH buffer solutions
- OR-PAM phantom (a)
  - .3mm ID silicone tubes, raster scanned at 581 and 594 nm, laser set to 60 to 80 nJ, covered in ~ 200 micrometer mouse skin tissue
- AR-PAM phantom (b)
  - Machined acrylic block with wells, raster scanned at 565 and 580 nm, 230 to 300 nJ laser energy, covered in ~2 mm chicken breast tissue







# pH: Results

- SNARF-5F has different absorption spectrum when dissociated, dissociation directly related to pH via Henderson-Hasselbach eq.
- Imaged pixels were unmixed between two wavelengths and averaged for a tube or well

# pH: Results

- First column is OR-PAM, second is AR-PAM
- First row is without tissue, second row is with tissue
- No more than ~1% error



# pH: Assessment

- (At the time) a novel and promising result
- Dual wavelength imaging
- Drawbacks
  - Realism of phantoms
  - Low laser energy

#### probe: Relevance

- Bespoke photoacoustic dye design to observe biological activity
- Detection of small concentration of dye activation
- Data on 5 chromophores

# probe: Goal

 $\bigcirc$ 

- Design a dye for photoacoustic imaging that will be changed by a biological process, resulting in an observable signal change
  - Use well studied cellular protease and protein substrate, pick chromophores to attach to substrate

# probe: Procedure

- First, dye selection
  - Polyethylene tubes in agar, filled with dye and imaged
- Second, cleavage in solution
  - Protein substrates built with BHQ3-Alexa750 pair or QXL680-Hilyte750 pair
  - Solutions of cleaved and uncleaved substrates tested in tubes
- Third, test in cell with protease
  - Cultivated cells suspended in agar, mixed with probe, and put in agar wells





| chromophore | λ <sub>exten</sub> (nm) | # (moVcm - g) | Φ (%) |
|-------------|-------------------------|---------------|-------|
| BHQ3        | 672                     | 42 700        |       |
| QXL680      | 679                     | 110 000       |       |
| Cy5.5       | 675/695                 | 250 000       | 0.23  |
| Alexa750    | 749/775                 | 290 000       | 0.12  |
| Hilyte750   | 754/778                 | 275 000       | 0.12  |



(a) 675 nm
(b) 750 nm
Beer Lambert Law

$$A = \varepsilon^* c^* |$$

- First row, B-A protein
- Second row, Q-H protein



• "We have found that the photoacoustic signal did not correlate with the absorbance and fluorescence of the molecules, as the highest photoacoustic signal arose from the least absorbing quenchers..."



• (B-A) One peak disappears post cleavage|b/c 675/750nm

HBSS



B-CP

B-APP-A

B-PP-A

## probe: Assessment

- Walks through process of designing photoacoustic probe-dye
- Again, dual wavelength imaging
- Drawbacks
  - Realism of phantoms
  - Constrained wavelength characterization