Eliminating Health Care Disparities With Mandatory Clinical Decision Support

The Venous Thromboembolism (VTE) Example

Brandyn D. Lau, MPH, CPH,*†‡ Adil H. Haider, MD, MPH,*§||¶ Michael B. Streiff, MD,†#
Christoph U. Lehmann, MD,‡** Peggy S. Kraus, PharmD, CACP,†† Deborah B. Hobson, BSN,*†
Franca S. Kraenzlin, MHS,* Amer M. Zeidan, MD,‡‡ Peter J. Pronovost, MD, PhD,†§¶
and Elliott R. Haut, MD, PhD*†\$||¶§§

Background: All hospitalized patients should be assessed for venous thromboembolism (VTE) risk factors and prescribed appropriate prophylaxis. To improve best-practice VTE prophylaxis prescription for all hospitalized patients, we implemented a mandatory computerized clinical decision support (CCDS) tool. The tool requires completion of checklists to evaluate VTE risk factors and contraindications to pharmacological prophylaxis, and then recommends the risk-appropriate VTE prophylaxis regimen.

Objectives: The objective of the study was to examine the effect of a quality improvement intervention on race-based and sex-based health care disparities across 2 distinct clinical services.

Research Design: This was a retrospective cohort study of a quality improvement intervention.

Subjects: The study included 1942 hospitalized medical patients and 1599 hospitalized adult trauma patients.

Measures: In this study, the proportion of patients prescribed risk-appropriate, best-practice VTE prophylaxis was evaluated.

Results: Racial disparities existed in prescription of best-practice VTE prophylaxis in the preimplementation period between black and white patients on both the trauma (70.1% vs. 56.6%, P=0.025) and

From the *Department of Surgery, Division of Acute Care Surgery, The Johns Hopkins University School of Medicine; †The Armstrong Institute for Patient Safety, Johns Hopkins Medicine; ‡Division of Health Sciences Informatics; \$Department of Anesthesiology & Critical Care Medicine; ||Department of Surgery, Center for Surgical Trials and Outcomes Research (CSTOR), The Johns Hopkins University School of Medicine; ||Department of Health Policy and Management, The Johns Hopkins University Bloomberg School of Public Health; #Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD; **Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Vanderbilt University School of Medicine, Nashville, TN; ††Department of Pharmacy, The Johns Hopkins Hospital; ‡‡Section of Hematology, Department of Internal Medicine, Yale University, New Haven, CT; and \$\$Department of Emergency Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD.

The authors declare no conflict of interest.

Reprints: Brandyn D. Lau, MPH, CPH, Department of Surgery, Division of Acute Care Surgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Osler 714A, Baltimore, MD 21287. E-mail: blau2@jhmi.edu.

Copyright © 2014 by Lippincott Williams & Wilkins

ISSN: 0025-7079/14/000-000

medicine (69.5% vs. 61.7%, P=0.015) services. After implementation of the CCDS tool, compliance improved for all patients, and disparities in best-practice prophylaxis prescription between black and white patients were eliminated on both services: trauma (84.5% vs. 85.5%, P=0.99) and medicine (91.8% vs. 88.0%, P=0.082). Similar findings were noted for sex disparities in the trauma cohort.

Conclusions: Despite the fact that risk-appropriate prophylaxis should be prescribed equally to all hospitalized patients regardless of race and sex, practice varied widely before our quality improvement intervention. Our CCDS tool eliminated racial disparities in VTE prophylaxis prescription across 2 distinct clinical services. Health information technology approaches to care standardization are effective to eliminate health care disparities.

Key Words: clinical decision support, venous thromboembolism, disparities

(Med Care 2014;00: 000-000)

BACKGROUND

Race is shown to be a predictor of health care quality and outcomes in the United States. ^{1,2} Several different mechanisms including institutional, systemic, ^{3,4} and provider factors have been postulated to explain differences in quality. Many urban hospitals located in economically underprivileged areas serve a greater proportion of minority patients and have generally been associated with a lower quality of care. ^{3,5,6} A meta-analysis recently reported that black patients are more likely to experience worse outcomes after trauma. ⁷ Unconscious, or implicit, biases exist among clinicians ⁸ that may influence clinical decision making, ⁹ and may be a root cause of existing disparities in the provision of high-quality health care. ^{10,11}

Despite widespread recognition of the existence of health care disparities, effective solutions to eliminate these disparities have been an elusive goal for many years, ^{12,13} and few, if any, interventions have proven to be beneficial. Health information technology has been proposed as a possible theoretical solution. ^{14–16}

Venous thromboembolism (VTE), comprising deep vein thrombosis and/or pulmonary embolism, is one of the most common causes of mortality among hospitalized patients. ^{17–20}

www.lww-medicalcare.com | 1

Although some VTE events are unavoidable, ^{21,22} many can be prevented with universal risk assessment and prescription of risk-appropriate prophylaxis, ^{23–28} However, many patients do not receive risk-appropriate prophylaxis, ^{29–31} The Agency for Healthcare Research and Quality has stated that implementing strategies to improve VTE prophylaxis is one of the top patient safety practices that should be implemented ^{32,33} and the "number one patient safety practice" to prevent in-hospital death. ¹⁸ Numerous tactics have been developed, with varying degrees of success. ^{34–36}

All hospitalized patients are at increased risk of developing VTE. Trespective of clinical condition, race, or sex, all patients should be assessed for VTE risk factors and prescribed risk-appropriate prophylaxis when they are admitted to the hospital. Computerized clinical decision support (CCDS) tools are an objective and reliable method to enhance clinical decision making. Using a mandatory CCDS tool, we have previously demonstrated significant improvements in prescription of risk-appropriate VTE prophylaxis and reduction in potentially preventable VTE. Tree prophylaxis

The purpose of this study is to examine the effect of a quality improvement (QI) intervention on health care disparities. We will examine subgroups of patients across 2 distinct clinical services to determine whether our mandatory CCDS tool affects subgroups of patients who are prescribed risk-appropriate VTE prophylaxis.

METHODS

Setting

In December 2007, the Johns Hopkins Hospital implemented a mandatory service-specific CCDS VTE risk assessment tool into the provider order entry system for adult patients hospital-wide.³⁸ The Johns Hopkins Hospital is an academic medical and state-designated Level 1 trauma center in Baltimore, MD. Approval was obtained from the Johns Hopkins Institutional Review Board.

VTE Order Set

A mandatory, service-specific CCDS tool was developed to improve prescription of best-practice VTE prophylaxis for all hospitalized patients, 38,39 When an admitting provider is writing the admission orders for any patient at our hospital, they must complete short checklists of VTE and bleeding risk factors. The tool then follows an evidence-based, service-specific algorithm to determine the patient's VTE risk as moderate, high, or very high, with or without contraindications for pharmacological prophylaxis. On the basis of the individual patient's risk stratum, the CCDS tool displays the recommended risk-appropriate VTE prophylaxis regimen to the admitting provider. Providers are not required to prescribe the CCDS-suggested regimen but may opt-in to the recommendation.

Study Population

Two arms were included in this study, hospitalized adult trauma patients and internal medicine patients, to represent distinct clinical services with minimal overlap in clinical providers. Each arm uses data from previously

published cohort studies within the same hospital,^{39,41} using novel analyses to explore the impact of the intervention on the basis of race and sex.

The first arm included all patients admitted to the adult trauma service. Patients admitted in 2007 served as our preimplementation group and were compared with the postimplementation group (patients admitted January 1, 2008 through December 31, 2010).³⁹

The second arm included all adult patients admitted to the internal medicine service during the month of November 2007 (the month immediately before implementation of the CCDS tool) and during the month of April 2010 (the last month before data collection for the study).⁴¹

Data Collection

For each preimplementation group, a single data abstracter reviewed patient charts to collect the following VTE-related variables: patient demographic information, VTE risk factors, contraindications to pharmacological prophylaxis, and written orders for prophylaxis (pharmacological and/or mechanical) within 24 hours of admission. For the post-implementation groups, these variables were extracted directly from the provider order entry system and the trauma center registry (Collector Trauma Registry, Digital Innovation Inc.). Compliance with best-practice VTE prophylaxis in both the preimplementation and postimplementation groups was defined as adherence to our service-specific VTE prevention algorithm. ^{38,39,41} Race and sex were determined on the basis of documentation of patient self-identification collected by administrative personnel during hospitalization.

Statistical Analysis

We compared prescription of best-practice prophylaxis between races and sexes both in the preimplementation and postimplementation periods using the 2-sided χ^2 test. Mean age was compared using the unpaired t test, categorical variables were compared using the 2-sided Fisher exact test, and median injury severity score and median length of stay were compared using the Wilcoxon rank sum test. A P-value of < 0.05 was considered statistically significant. Statistical analyses were performed using STATA version 12.0 (Statacorp, College Station, TX).

RESULTS

A total of 1599 hospitalized adult trauma patients and 1942 hospitalized adult internal medicine patients met inclusion criteria. Within the trauma population, there were few Hispanic (n=68), Asian (n=3), Native American (n=1), and unreported ethnicity (n=33) patients. In the medicine cohort, similarly small numbers were noted [Hispanic (n=24), Asian (n=22), and unreported (n=39)]. Because of extremely low numbers we decided to analyze the 2 most common racial groups, black and white patients, only. The patient populations had a similar age, race, and sex distribution before and after implementation of the CCDS tool (Table 1).

TABLE 1. Demographics of Included Hospitalized Adult Trauma and Internal Medicine Patients

	Preimplementation	Postimplementation	P
Trauma	N = 374	N = 1120	
Mean age (SD) (y)	36.2 (18.1)	35.9 (17.4)	0.775
Black [n (%)]	291 (77.8)	831 (74.1)	0.168
Male [n (%)]	305 (81.6)	863 (77.1)	0.071
Median ISS (IQR)	9 (4–16)	9 (4–16)	0.179
Blunt trauma [n (%)]	192 (51.3)	620 (55.4)	0.187
GCS < 15 [n (%)]	57 (15.2)	132 (11.8)	0.088
Median LOS (IQR) (d)	4 (2–8)	4 (2–7)	0.009
Any VTE risk factor [n (%)]	291 (77.8)	890 (79.5)	0.509
Internal medicine	N = 959	N = 898	
Mean age (SD) (y)	56.1 (17.1)	55.2 (16.3)	0.247
Black [n (%)]	567 (59.1)	547 (60.9)	0.448
Male [n (%)]	481 (50.1)	465 (51.8)	0.486
Median LOS (IQR) (d)	3 (2–6)	3 (2–6)	0.249
Any VTE risk factor [n (%)]	615 (64.1)	492 (54.8)	< 0.001

IQR indicates interquartile range; ISS, injury severity score; LOS, length of stay; VTE, venous thromboembolism.

Trauma Patients

Black trauma patients were younger (32.5 vs. 46.5 y, P < 0.001), disproportionately male (83.9% vs. 61.0%, P < 0.001), more likely to present with penetrating trauma (57.5% vs. 9.9%, P < 0.001), and less likely to present with 1 or more risk factors for VTE (77.8% vs. 82.8%, P = 0.047) compared with white trauma patients (Table 2). Black trauma patients had a longer length of stay and were more often male in the preimplementation group than the postimplementation group. There were no differences among white trauma patients before and after implementation (Table 3).

In the preimplementation period, the proportion of trauma patients prescribed risk-appropriate VTE prophylaxis was significantly higher for black (70.1%) than white (56.6%) patients (P=0.025). After implementation, prescription of risk-appropriate prophylaxis significantly increased for all patients [black (84.5%) and white (85.5%)], and there were no differences between racial groups (P=0.99) (Fig. 1A).

Before implementation, the proportion of male trauma patients prescribed risk-appropriate VTE prophylaxis was

significantly higher (69.5% vs. 55.1%, P = 0.045). After implementation, compliance increased significantly for both male (85.7%) and female (81.2%) patients and there were no differences between groups (P = 0.078) (Fig. 2A).

Internal Medicine Patients

Between racial groups, black internal medicine patients were younger (54.0 vs. 58.1 y, P < 0.001) and less frequently male (48.6% vs. 54.5%, P = 0.012). In the preimplementation period, significantly more white than black patients (68.6% vs. 61.0%, P = 0.017) had at least 1 major VTE risk factor (Table 2). White patients were younger in the preimplementation group (60.4 vs. 56.9 y, P = 0.004). Fewer black (54.7% vs. 61.0%, P = 0.034) and white (68.6% vs. 55.0%, P < 0.001) patients presented with a major risk factor in the postimplementation period (Table 3).

Before implementation, significantly more black patients were prescribed risk-appropriate VTE prophylaxis than white patients (69.5% vs. 61.7%, P = 0.015). After implementation, compliance increased significantly for both black (91.8%) and white (88.0%) patients and there were no differences between

TABLE 2. Clinical Characteristics of Included Hospitalized Adult Trauma and Internal Medicine Patients Before and After Implementation of the Computerized Clinical Decision Support Tool, by Race

	Preimplementation			Postimplementation		
	Black	White	P	Black	White	P
Trauma	n = 291	n = 83		n = 831	n = 289	
Mean age (SD) (y)	32.8 (15.3)	47.9 (21.8)	< 0.001	32.4 (14.6)	46.1 (20.6)	< 0.001
Male [n (%)]	256 (88.0)	49 (59.0)	< 0.001	685 (82.4)	178 (61.6)	< 0.001
Median ISS (IQR)	9 (4–16)	9 (4–17)	0.58	9 (4–16)	9 (4–16)	0.730
Blunt trauma [n (%)]	113 (38.8)	79 (95.2)	< 0.001	364 (43.8)	256 (88.6)	< 0.001
GCS < 15 [n (%)]	48 (16.5)	9 (10.8)	0.23	105 (12.6)	27 (9.3)	0.140
Median LOS (IQR) (d)	5 (3–8)	4 (2–6)	0.053	4 (2–8)	4 (2–8)	0.182
Any VTE risk factor [n (%)]	226 (77.7)	65 (78.3)	0.99	647 (77.9)	243 (84.1)	0.028
Internal medicine	n = 567	n = 392		n = 547	n = 351	
Mean age (SD) (y)	54.0 (16.4)	60.4 (16.3)	< 0.001	54.0 (15.9)	56.9 (16.7)	0.009
Male [n (%)]	255 (45.0)	226 (57.7)	< 0.001	286 (52.3)	179 (51.0)	0.732
Median LOS (IQR) (d)	3 (2–6)	3 (2-7)	0.625	3 (2–6)	4 (2–6)	0.853
Any VTE risk factor [n (%)]	346 (61.0)	269 (68.6)	0.017	299 (54.7)	193 (55.0)	0.945

IQR indicates interquartile range; ISS, injury severity score; LOS, length of stay; VTE, venous thromboembolism.

Median LOS (IQR) (d)

Any VTE risk factor [n (%)]

Black Patients White Patients Pre **Post** P Pre Post P n = 831n = 289n = 291n = 83Trauma Mean age (SD) (y) 32.8 (15.3) 32.4 (14.6) 0.691 47.9 (21.8) 46.1 (20.6) 0.489 Male [n (%)] 256 (88.0) 685 (82.4) 0.026 49 (59.0) 178 (61.6) 0.703 9 (4-17) 9 (4-16) Median ISS (IQR) 9 (4–16) 9 (4-16) 0.197 0.727 Blunt trauma [n (%)] 364 (43.8) 79 (95.2) 256 (88.6) 113 (38.8) 0.148 0.095 GCS < 15 [n (%)] 105 (12.6) 48 (16.5) 0.112 9 (10.8) 27 (93) 0.676 4 (2–8) Median LOS (IQR) (d) 5 (3-8) 4(2-8)< 0.001 4 (2-6) 0.410 Any VTE risk factor [n (%)] 647 (77.9) 226 (77.7) 0.935 65 (78.3) 243 (84 1) 0.248 Internal medicine n = 567n = 547n = 392n = 351Mean age (SD) (y) 54.0 (16.4) 54.0 (15.9) 0.99 60.4 (16.3) 56.9 (16.7) 0.004 Male [n (%)] 255 (45.0) 286 (52.3) 0.016 226 (57.7) 179 (51.0) 0.077

0.533

0.034

3 (2-6)

299 (54.7)

TABLE 3. Clinical Characteristics of Included Hospitalized Adult Trauma and Internal Medicine Patients, by Race Before (Pre) and After (Post) Implementation

IQR indicates interquartile range; ISS, injury severity score; LOS, length of stay; VTE, venous thromboembolism.

3(2-6)

346 (61.0)

races (P=0.082) (Fig. 1B). There were no differences in risk-appropriate VTE prophylaxis prescription between sexes, before or after implementation (Fig. 2B).

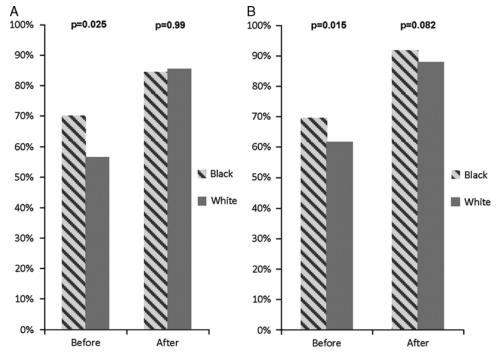
DISCUSSION

Implementation of a mandatory CCDS tool eliminated race-based health care disparities in risk-appropriate VTE prophylaxis prescription for hospitalized medical and trauma patients. Sex disparities in best-practice VTE prophylaxis prescription were also eliminated by the same CCDS tool.

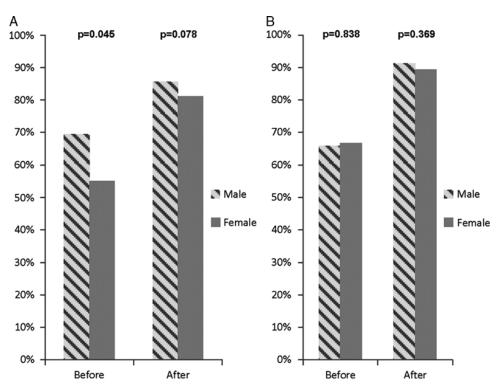
These findings highlight the potential of health information technology approaches to improve the quality of care for all patients and eradicate health care disparities.

4 (2-6)

193 (55.0)


0.319

< 0.001


3(2-7)

269 (68.6)

The intended purpose of this QI intervention was to improve the care for all hospitalized patients rather than specifically targeting subgroups of patients who were receiving suboptimal care. We recognize that eliminating disparities in providing best-practice VTE prevention was an unintended consequence of this intervention. However, disparities elimination falls under the general umbrella of QI and has been a goal of health information technologies. Previous studies of QI

FIGURE 1. Comparison of the rates for risk-appropriate VTE prophylaxis prescription for black (hashed gray) and white (dark gray) patients before and after implementation of the mandatory computerized provider order entry (CPOE) clinical decision support (CDS) VTE module on the trauma (A) and internal medicine (B) services. The proportion of patients prescribed best-practice VTE prophylaxis increased significantly (P < 0.05) within both race categories for both trauma and internal medicine patients.

FIGURE 2. Comparison of the rates for risk-appropriate VTE prophylaxis prescription for female (dark gray) and male (hashed gray) hospitalized patients before and after of the mandatory CPOE clinical decision support VTE module was implemented on the trauma (A) and internal medicine (B) services. The proportion of patients prescribed best-practice VTE prophylaxis increased significantly (*P*<0.05) within both sex categories for both trauma and internal medicine patients.

interventions that have been shown to lessen or eliminate disparities focused narrowly on certain patient populations, such as patients with diabetes⁴² or myocardial infarction,⁴³ or patients with cancer undergoing surgery.⁴⁴ Our findings demonstrate the power of broadly applied QI interventions targeting all hospitalized patients and represent another beneficial consequence of QI efforts in health care.

It remains unclear which specific factors are most strongly associated with health care disparities and may influence disparities in real-world decision making. One possible explanation is that black patients are known to have undiagnosed comorbidities and be at risk for cardiovascular complications, 45 including VTE. Providers who were making clinical decisions entirely independently, without the use of a standardized mandatory decision support tool, may have chosen to prescribe more aggressive VTE prophylaxis regimens for these black patients to overcompensate for these issues. Providers may not necessarily believe that all patients require VTE prophylaxis and this misguided, subconscious calculation of the risk benefit ratio did not favor prescribing VTE prophylaxis for white patients. A recent study using an Implicit Association Test, and a series of clinical vignettes applied to first-year medical students, showed an overall preference for white individuals but the clinical vignette responses were not associated with patient race. 11 Although these findings are important insights to clinician perceptions, they represent simulated decision making in controlled environments rather than real-world clinical decisions for

actual hospitalized patients. However, our study demonstrates that a well-integrated CCDS tool transcends those factors, regardless of the causal pathway, and is capable of modifying the decisional behavior that may create health care disparities by reducing the impact of bias.

Data show that black patients more commonly receive lower-quality care than white patients 1,46 and efforts to reduce health care disparities have often failed. Therefore we were somewhat surprised to find that white hospitalized patients were less likely to be prescribed risk-appropriate VTE prophylaxis during the preimplementation period. However, previous studies have demonstrated better outcomes for black patients compared with white patients undergoing kidney dialysis ⁴⁷ or survival after trauma. 48 Similar to what has been reported in these studies, age or clinical condition may be confounding variables, which requires further exploration in a larger data set. Another potential explanation was identified in a study in which black hospitalized patients rated their interaction with prescribers as less participatory than whites.⁴⁹ Consequently, it is possible that shared decision making between white patients and prescribers resulted in suboptimal VTE prophylaxis.

We recognize that our study has several limitations. First, we were not able to evaluate variation among individual types of clinicians (ie, physicians, nurse practitioners), limiting our ability to evaluate the impact of experience on health care disparities. However, our findings were well-conserved across 2 very different clinical services indicating that these disparities are neither random nor

attributable to select prescribers within a single clinical service. Second, our limited sample size did not allow for multivariable analysis to elucidate other associations with the observed disparity. Third, our results were demonstrated using only a single evidence-based practice (VTE prophylaxis) at a single academic medical center. Nevertheless, the CCDS intervention eliminated disparities among a diverse group of medical and surgical patients, proving its effectiveness in a "real-world" setting. Finally, there were differences in the number of patients who presented with major VTE risk factors. However, risk-appropriate prophylaxis is determined on an individual patient basis, so these differences should not have affected the decision-making process.

When designing CCDS tools to impact provider behavior, it is important to consider how the tool will be integrated into the clinical and decisional workflow.⁵⁰ Our mandatory CCDS tool focuses clinician attention on completing a task and forces VTE risk assessment for every patient. Passive CCDS tools that do not require provider action have been shown to be less effective at impacting provider behavior⁵¹ and will likely have less impact on eliminating disparities in care delivery.

Despite repeated evidence of the existence of health care disparities, we do not know of previous interventions that have been as successful at eliminating these disparities. Mandatory CCDS tools reduce the burden of complex and repetitive decision making, while promoting best practice care for all patients equally.

REFERENCES

- Smedley BD, Stith AY, Nelson AR, eds. Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care. Washington, DC: The National Academies Press; 2003.
- Haider AH, Chang DC, Efron DT, et al. Race and insurance status as risk factors for trauma mortality. Arch Surg. 2008;143:945–949.
- Hasnain-Wynia R, Baker DW, Nerenz D, et al. Disparities in health care are driven by where minority patients seek care: examination of the hospital quality alliance measures. Arch Intern Med. 2007;167:1233–1239.
- Baicker K, Chandra A, Skinner JS. Geographic variation in health care and the problem of measuring racial disparities. *Perspect Biol Med*. 2005;48:S42–S53.
- 5. Haider AH, Ong'uti S, Efron DT, et al. Association between hospitals caring for a disproportionately high percentage of minority trauma patients and increased mortality: a nationwide analysis of 434 hospitals. *Arch Surg.* 2012;147:63–70.
- Ly DP, Lopez L, Isaac T, et al. How do black-serving hospitals perform on patient safety indicators? Implications for national public reporting and pay-for-performance. *Med Care*. 2010;48:1133–1137.
- Haider AH, Weygandt PL, Bentley JM, et al. Disparities in trauma care and outcomes in the United States: a systematic review and metaanalysis. J Trauma Acute Care Surg. 2013;74:1195–1205.
- Sabin JA, Rivara FP, Greenwald AG. Physician implicit attitudes and stereotypes about race and quality of medical care. *Med Care*. 2008; 46:678–685.
- 9. Green AR, Carney DR, Pallin DJ, et al. Implicit bias among physicians and its prediction of thrombolysis decisions for black and white patients. *J Gen Intern Med.* 2007;22:1231–1238.
- van Ryn M, Fu SS. Paved with good intentions: do public health and human service providers contribute to racial/ethnic disparities in health? Am J Public Health. 2003;93:248–255.
- Haider AH, Sexton J, Sriram N, et al. Association of unconscious race and social class bias with vignette-based clinical assessments by medical students. *JAMA*. 2011;306:942–951.

- Haider AH, Pronovost PJ. Health information technology and the collection of race, ethnicity, and language data to reduce disparities in quality of care. *Jt Comm J Qual Patient Saf.* 2011;37:435–436.
- Fiscella K, Franks P, Gold MR, et al. Inequality in quality: addressing socioeconomic, racial, and ethnic disparities in health care. *JAMA*. 2000;283:2579–2584.
- National Healthcare Disparities Report. AHRQ Publication No. 12-0006. Rockville, MD: Agency for Healthcare Research and Quality; 2012. Available at: www.ahrq.gov/qual/qrdr11.htm.
- Baron RJ. Quality improvement with an electronic health record: achievable, but not automatic. Ann Intern Med. 2007;147:549–552.
- Graham GN. Using Technology to Improve Minority Health. US Department of Health and Human Services Office of Minority Health; March 13, 2009.
- Kardooni S, Haut ER, Chang DC, et al. Hazards of benchmarking complications with the National Trauma Data Bank: numerators in search of denominators. J Trauma. 2008;64:273–277.
- Maynard G, Stein J. Preventing Hospital-Acquired Venous Thromboembolism: A Guide for Effective Quality Improvement. Prepared by the Society of Hospital Medicine. AHRQ Publication No. 08-0075. Rockville, MD: Agency for Healthcare Research and Quality; August 2008.
- Alikhan R, Peters F, Wilmott R, et al. Fatal pulmonary embolism in hospitalised patients: a necropsy review. J Clin Pathol. 2004;57: 1254–1257.
- Sandler DA, Martin JF. Autopsy proven pulmonary embolism in hospital patients: are we detecting enough deep vein thrombosis? J R Soc Med. 1989;82:203–205.
- Streiff MB, Haut ER. The CMS ruling on venous thromboembolism after total knee or hip arthroplasty: weighing risks and benefits. *JAMA*. 2009;301:1063–1065.
- 22. Haut E, Lau B, Streiff M. New oral anticoagulants for preventing venous thromboembolism. *BMJ*. 2012;344:e3820.
- Cohen AT, Alikhan R, Arcelus JI, et al. Assessment of venous thromboembolism risk and the benefits of thromboprophylaxis in medical patients. *Thromb Haemost*. 2005;94:750–759.
- 24. Guyatt GH, Akl EA, Crowther M, et al. Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest*. 2012;141: 75.478
- 25. Rogers FB, Cipolle MD, Velmahos G, et al. Practice management guidelines for the prevention of venous thromboembolism in trauma patients: the EAST practice management guidelines work group. *J Trauma*. 2002;53:142–164.
- 26. Samama MM, Cohen AT, Darmon JY, et al. A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. Prophylaxis in Medical Patients with Enoxaparin Study Group. N Engl J Med. 1999;341:793–800.
- 27. Streiff MB, Lau BD. Thromboprophylaxis in nonsurgical patients. Hematology Am Soc Hematol Educ Program. 2012;2012:631-637.
- Aboagye JK, Lau BD, Schneider EB, et al. Linking processes and outcomes: a key strategy to prevent and report harm from venous thromboembolism in surgical patients. *JAMA Surg.* 2013;148:299–300.
- Goldhaber SZ, Tapson VF, DVT FREE Steering Committee. A prospective registry of 5,451 patients with ultrasound-confirmed deep vein thrombosis. Am J Cardiol. 2004;93:259–262.
- Cohen AT, Tapson VF, Bergmann J, et al. Venous thromboembolism risk and prophylaxis in the acute hospital care setting (ENDORSE study): a multinational cross-sectional study. *Lancet*. 2008;371:387–394.
- US Department of Health and Human Services. The surgeon general's call to action to prevent deep vein thrombosis and pulmonary embolism, 2008. Available at: http://www.ncbi.nlm.nih.gov/books/NBK44178/.
- Shekelle PG, Pronovost PJ, Wachter RM, et al. The top patient safety strategies that can be encouraged for adoption now. *Ann Intern Med*. 2013;158:365–368.
- 33. Lau BD, Haut ER. Practices to prevent venous thromboembolism: a brief review. *BMJ Qual Saf.* 2014;23:187–195.
- 34. Durieux P, Nizard R, Ravaud P, et al. A clinical decision support system for prevention of venous thromboembolism effect on physician behavior. *JAMA*. 2000;283:2816–2821.

- Kucher N, Koo S, Quiroz R, et al. Electronic alerts to prevent venous thromboembolism among hospitalized patients. N Engl J Med. 2005; 352:969–977
- Maynard GA, Morris TA, Jenkins IH, et al. Optimizing prevention of hospital-acquired venous thromboembolism (VTE): prospective validation of a VTE risk assessment model. J Hosp Med. 2010;5:10–18.
- Anderson FA Jr, Spencer FA. Risk factors for venous thromboembolism. Circulation. 2003;107:19–116.
- 38. Streiff MB, Carolan H, Hobson DB, et al. Lessons from the Johns Hopkins Multi-Disciplinary Venous Thromboembolism (VTE) Prevention Collaborative. *BMJ*. 2012;344:e3935.
- Haut ER, Lau BD, Kraenzlin FS, et al. Improved prophylaxis and decreased preventable harm with a mandatory computerized clinical decision support tool for venous thromboembolism (VTE) prophylaxis in trauma patients. Arch Surg. 2012;10:901–907.
- Monn MF, Haut ER, Lau BD, et al. Is venous thromboembolism in colorectal surgery patients preventable or inevitable: one institution's experience. J Am Coll Surg. 2013;216:395–401.
- 41. Zeidan AM, Streiff MB, Lau BD, et al. Impact of a venous thromboembolism prophylaxis "smart order set": improved compliance, fewer events. *Am J Hematol*. 2013;88:545–549.
- 42. Betancourt JR, Duong JV, Bondaryk MR. Strategies to reduce diabetes disparities: an update. *Curr Diab Rep.* 2012;12:762–768.
- 43. Cohen MG, Fonarow GC, Peterson ED, et al. Racial and ethnic differences in the treatment of acute myocardial infarction: findings

- from the Get With the Guidelines-Coronary Artery Disease program. *Circulation*. 2010;121:2294–2301.
- 44. Parsons HM, Habermann EB, Stain SC, et al. What happens to racial and ethnic minorities after cancer surgery at American College of Surgeons National Surgical Quality Improvement Program hospitals? J Am Coll Surg. 2012;214:539–547.
- Duron VP, Monaghan SF, Connolly MD, et al. Undiagnosed medical comorbidities in the uninsured: a significant predictor of mortality following trauma. J Trauma Acute Care Surg. 2012;73:1093–1098.
- 46. Egede LE. Race, ethnicity, culture, and disparities in health care. *J Gen Intern Med.* 2006;21:667–669.
- Kucirka LM, Grams ME, Lessler J, et al. Association of race and age with survival among patients undergoing dialysis. *JAMA*. 2011;306:620–626.
- 48. Hicks CW, Hashmi ZG, Velopulos C, et al. Association between race and age in survival after trauma. *JAMA Surg.* 2014;149:642–647.
- Cooper-Patrick L, Gallo JJ, Gonzales JJ, et al. Race, gender, and partnership in the patient-physician relationship. *JAMA*. 1999;282: 583–589.
- Baysari MT, Westbrook JI, Richardson KL, et al. The influence of computerized decision support on prescribing during ward-rounds: are the decision-makers targeted? J Am Med Inform Assoc. 2011;18: 754-750
- Miller AM, Boro MS, Korman NE, et al. Provider and pharmacist responses to warfarin drug-drug interaction alerts: a study of healthcare downstream of CPOE alerts. J Am Med Inform Assoc. 2011;18(suppl 1): i45–i50.