Ultrasound Needle Point Guidance using Active Echo and Mobile Imaging Project Checkpoint

Bofeng Zhang and Phillip Oh Mentors: Dr. Emad Boctor and Alexis Cheng

Overview

- Project Overview
- Current Progress
- Deliverables
- Updated Timeline
- Dependencies

Project Overview

 Project Goal: Use an ultrasound emitting needle, an ultrasound probe (as receiver) and images to track the location of the needle inside a body

Project Overview

Project Overview

Edge Detection (Prewitt operator)

$$\mathbf{G_x} = \begin{bmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{bmatrix} * \mathbf{A} \quad \text{and} \quad \mathbf{G_y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ +1 & +1 & +1 \end{bmatrix} * \mathbf{A}$$

where * here denotes the 2-dimensional convolution operation.

- $\mathbf{G}=\sqrt{\mathbf{G}_{x}{}^{2}+\mathbf{G}_{y}{}^{2}}$
- $\mathbf{\Theta} = \operatorname{atan2}(\mathbf{G}_y, \mathbf{G}_x)$

- A is the original image
- The operator uses two kernels to get G_x and G_y (derivative approximations)
- G is the gradient magnitude approximation
- Θ is the direction of the gradient

Hough Transform

- Used to find the straight lines in the image
- First parameterize points in terms of r, θ $r = x \cos \theta + y \sin \theta$
- Takes binary image after edge detection
- Then use a 2D array as accumulator with r, θ as dimensions for bins
- Points added to the accumulator for lines that fit into the bins
- The max valued bin represents the line from the image

Camera Calibration

http://www.vision.caltech.edu/bouguetj/calib_doc/gifs/list_images.gif

Camera Calibration

$$\begin{aligned} \mathbf{x}_{n} &= \begin{bmatrix} \mathbf{X}_{c} / \mathbf{Z}_{c} \\ \mathbf{Y}_{c} / \mathbf{Z}_{c} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \\ \mathbf{x}_{d} &= \begin{bmatrix} \mathbf{x}_{d}(\mathbf{l}) \\ \mathbf{x}_{d}(\mathbf{2}) \end{bmatrix} = (\mathbf{1} + \mathbf{kc}(\mathbf{l}) \mathbf{r}^{2} + \mathbf{kc}(\mathbf{2}) \mathbf{r}^{4} + \mathbf{kc}(\mathbf{5}) \mathbf{r}^{6}) \mathbf{x}_{n} + \mathbf{dx} \\ \mathbf{KK} &= \begin{bmatrix} \mathbf{fc}(\mathbf{1}) & \mathbf{alpha}_{\mathbf{c}} \mathbf{c} * \mathbf{fc}(\mathbf{1}) & \mathbf{cc}(\mathbf{1}) \\ \mathbf{0} & \mathbf{fc}(\mathbf{2}) & \mathbf{cc}(\mathbf{2}) \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \\ \begin{bmatrix} \mathbf{x}_{p} \\ \mathbf{y}_{p} \\ \mathbf{1} \end{bmatrix} &= \mathbf{KK} \begin{bmatrix} \mathbf{x}_{d}(\mathbf{l}) \\ \mathbf{x}_{d}(\mathbf{2}) \\ \mathbf{1} \end{bmatrix} \end{aligned}$$

 x_c – point in camera coordinates x_n – normalized image projection vector x_p – point in pixel coordinates fc – focal length cc – principal point alpha_c – skew coefficient (angle between x and y pixel axes) kc – distortion coefficients

What we want is the camera coordinates, x_n , from pixel coordinates, x_p , which can only be done numerically. Normalize(x_pixel,fc,cc,kc,alpha_c) from the Camera Calibration toolbox achieves this.

Computing Plane in Camera Coordinates

• Using the points of the line obtained from the Hough transform and the camera calibration, the plane formed from the camera origin and the needle can be computed.

 $\begin{aligned} x_{p1}, x_{p2}, & \text{are two points on the needle.} \\ x_1 &= [\text{normalize}(x_{p1})(x) \text{ normalize}(x_{p1})(y) 1]' \\ x_2 &= [\text{normalize}(x_{p2})(x) \text{ normalize}(x_{p2})(y) 1]' \\ x_3 &= [0 \ 0 \ 0]' \\ \begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix} = \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0. \end{aligned}$

Despite the depth of the needle being unknown, the normalized points will give us the same plane.

Current Progress

• Sample Image

Next steps

- Ultrasound calibration and calculation of needle point
- Analysis using UR5 robot via measuring changes in position of the needle using UR5 movement as ground truth

Deliverables

- Minimum: (NOW Expected by April 4, 2015)
- 3D position of probe-tip offline, more specifically
 - Segmentation of needle in images taken from webcam/iPhone (Done)
 - iPhone mount to ultrasound probe (Solved with Lego attachment to iPhone case)
 - Camera calibration (Done)
 - Ultrasound calibration
 - Recover needle-point position using US and iPhone images
- **Expected:** (NOW Expected by April 11, 2015)
 - Analysis and validation of technique (perform in water so visual measurements can be taken)
- Maximum: (Expected by May 2, 2015)
 - Real-time 3D position of probe-tip using live-feed from iPhone camera and US machine

							Μ	in	Expe	cted	M	ах	
Update	7				,								
	February		March					April			Мау		
	2/16	2/23	3/2	3/9	3/16	3/23	3/30	4/6	6 4/13	4/20	4/27	5/4	5/5
Background Research													
Project Proposal													
Written Design													
Needle Segmentation													
CAD model of camera holder													
3-D printed camera holder													
Ultrasound calibration													
Recover needle tip position													
Test needle accuracy in water													
Build phantom and test needle in phantom													
Implementation of real-time system													
Final Report and Poster Session													

Dependencies

- Wyman 3D printer access
 - No longer needed will use a Lego block attached to iPhone case instead
- Ultrasound machine tutorial
 - Meeting with Alexis for this on 3/26/15
 - Reschedule meeting or contact Dr. Boctor for other options if not met
 - Deadline for Resolving: 3/27/15
- UR5 use tutorial
 - Need to set up meeting time with Alexis
 - Contact Dr. Boctor for other options if not met
 - Deadline for Resolving: 4/3/15