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Introduction

• Accurately reconstruct a tissue/surface from finite number of force 

sensor palpation readings

• Functional Geometry remodeling 

• : MSE ~1.17

• Functional Stiffness remodeling

• Combined geometry/stiffness remodeling

• Optimal Palpation trajectory on unknown surface 

• Potential application: guiding exploratory surgery

• Accurate real time localization of tumors

Outcomes and Results

The Problem
• How can we accurately reconstruct a surface without any 

assumptions on the underlying structure?

• How do we select the fewest number of points to perform this 

reconstruction?
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The Solution
1. Create Gaussian Process (GP) algorithm to independently 

model both geometry and stiffness.

• Use force sensor palpations to measure tissue height and 

stiffness

• After each palpation, the two independent GP’s will be 

updated in light of the new data

• A GP modeling is achieved by sampling from a multivariate 

Gaussian distribution such that:
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• GP modeling is advantageous because every 

predicted point has an associated confidence interval

2. Approaches taken to selecting the next point:

• Randomly select nearby points to choose from based on 

these criteria:

a) max(𝑎 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 + 𝑏 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)
b) max(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

a) Dynamic Sampling Area

𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =
|𝐵𝑜𝑟𝑖𝑛𝑔 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠|

𝑀𝑎𝑥 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
+ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
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b) Predicted Change in Variance:
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a) Quadseek

c) max 𝑎 ∗
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛
+ 𝑏 ∗

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛
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Lessons Learned
• While GPs are versatile, they do have their limits

• Adaptive searching is no small feat

• Algorithms that work well on simulated data may not perform 

perfectly in practice

• Reports are good for thinking.

• Procrastination is not good 

Future Work

• Grid Initialization and Adaptive Grid Search

• Test on other stiffness distributions. 

• Assume stiffness to be a non-linear model.

• GP with co-dependent outputs

Symbol Meaning

y Values from training points

y* Values at test set inputs

K Training set covariances

K* Training-test set covariances

K** Test set covariances

k(x,x’) Covariance element

𝜉 Reference Point

 𝑥 Query Candidate

L

L/2

Adaptive Maximum Search:  Height + Stiffness

max
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛
+

𝑃𝑟𝑒𝑑𝑖𝑐𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛

Geo. MSE: 2.54 Num. points: 150

Adaptive Maximum Search:  Stiffness

max
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛
+

𝑃𝑟𝑒𝑑𝑖𝑐𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛

Adaptive Maximum Search:  Height

max
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛
+

𝑃𝑟𝑒𝑑𝑖𝑐𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛

Num. points: 150Geo. MSE: 17.84

Geo. MSE: 1.17 Num. points: 150

Max(predicted change in variance)

Uniform (grid) Sampling

Num. points: 324|Geo. MSE: .755

Phantom


