

Optimized Tissue Modeling

Computer Integrated Surgery II

Spring, 2015 **Team 10**

Nate Schambach, and Benjamin Strober, under the mentorship of Preetham Chalasani, Professor Marin Kobilarov and Professor Russell Taylor

Introduction

- Accurately reconstruct a tissue/surface from finite number of force sensor palpation readings
 - Functional Geometry remodeling
 - : MSE ~1.17
 - Functional Stiffness remodeling
 - Combined geometry/stiffness remodeling
 - Optimal Palpation trajectory on unknown surface
- Potential application: guiding exploratory surgery
 - Accurate real time localization of tumors

The Problem

- How can we accurately reconstruct a surface without any assumptions on the underlying structure?
- How do we select the fewest number of points to perform this reconstruction?

The Solution

- Create Gaussian Process (GP) algorithm to independently model both geometry and stiffness.
 - Use force sensor palpations to measure tissue height and stiffness
 - After each palpation, the two independent GP's will be updated in light of the new data
 - A GP modeling is achieved by sampling from a multivariate Gaussian distribution such that:

$k(x, x') = \sigma_f^2 \exp\left[\frac{-(x - x')^2}{2l^2}\right] + \sigma_n^2 \delta(x, x')$		
	Symbol	Meaning
$\begin{bmatrix} \mathcal{Y} \\ \mathcal{Y}_* \end{bmatrix} \sim \mathcal{N} \begin{bmatrix} 0, \begin{matrix} K & K_*^T \\ K_* & K_{**} \end{bmatrix}$	у	Values from training points
	y*	Values at test set inputs
$y_* y \sim \mathcal{N}(K_*K^{-1}y, K_{**} - K_*K^{-1}K_*^T)$	Κ	Training set covariances
	K*	Training-test set covariances
$\overline{y*} = K_* K^{-1} y$	K**	Test set covariances
	k(x,x')	Covariance element
$var(y_*) = K_{**} - K_* K^{-1} K_*^T$	ξ	Reference Point

- GP modeling is advantageo \tilde{x} Query Candidate predicted point has an associated confidence interval
- Approaches taken to selecting the next point: 2.
 - Randomly select nearby points to choose from based on these criteria:
 - max(*a* * *predicted mean* + *b* * *predicted variance*) a
 - max(*predicted change in variance*) b)

Boring — Previous Interest Factor = + Correction Factor Max Difference Minimum L Interest Factor

Lessons Learned

- While GPs are versatile, they do have their limits
- Adaptive searching is no small feat
- Algorithms that work well on simulated data may not perform perfectly in practice
- Reports are good for thinking.
- Procrastination is not good ③

Future Work

- Grid Initialization and Adaptive Grid Search
- Test on other stiffness distributions.
- Assume stiffness to be a non-linear model.
- GP with co-dependent outputs

Support by and Acknowledgements

- **CISST/ERC**
- Thank you to Preetham Chalasani, Dr. Kobilarov, Dr. Taylor, and our colaborators at CMU and Vanderbilt

