

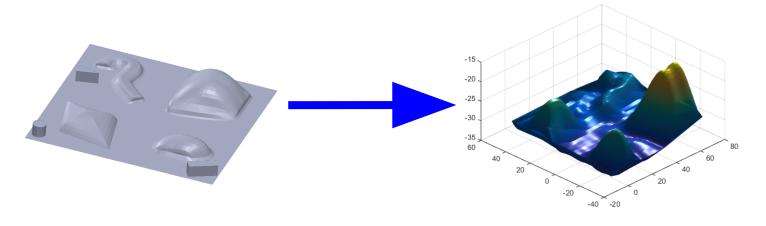
Project Checkpoint Presentation: Optimized Tissue Structure Modeling

Team 10: Benjamin Strober & Nate Schambach Mentors: Prof. Kobilarov, Prof. Taylor, Preetham Chalasani

Presentation Outline

Background/Project Design

Completed Work

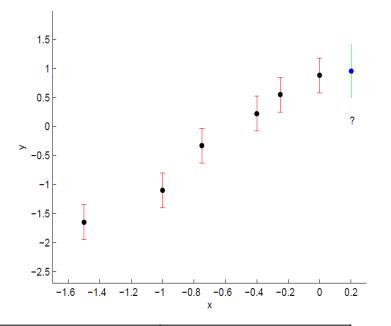

Dependencies/Problems

Optimized Tissue Reconstruction

Accurately reconstruct a tissue/surface from finite number of force sensor palpation readings

Background/Project design

Completed Work


Dependencies/Problems

Tissue Reconstruction: Gaussian Process

- A Gaussian Process (GP) is a collection of random variables that have joint gaussian distributions
- For tissue reconstruction:
 - Model each force sensor palpation reading as gaussian distribution and then compute gaussian process of al palpation readings
 - Use gaussian process to model interpolated points within tissue range

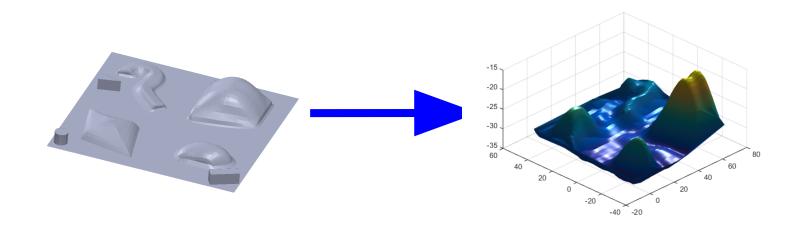
Tissue Reconstruction: Gaussian Process

$$\hat{y} = Cov(t, \tilde{x}) * Cov(t, t)^{-1} * y(t)$$

$$\sigma_{\hat{y}}^{2}(\tilde{x}) = C(\tilde{x}, \tilde{x}) - Cov(t, \tilde{x}) * Cov(t, t)^{-1} * Cov(t, \tilde{x})$$

Use these equations to model tissue after testing n points

- The next algorithmic step is to select the (n+1)th point to test
 - We will later discuss methods for optimally selecting the (n+1)th point


Geometry reconstruction through batch process

- For simplicity, we first implemented a GP with the purpose of reconstructing a digital phantom
- To further simplify the process, a batch process was used
 - There was no optimal selection of an (n+1)th point
 - Instead, 1.2% of the pixels were sampled and used for the training set

Geometry reconstruction through batch process

Background/Project design

Completed Work

Dependencies/Problems

Online GP Regression Pseudocode

while (n < max_number_points_tested) {</pre>

- Train GP on n points
- pick (n+1)th point
- Train on (n+1) points

predict values (reconstruction)

Methods for picking the next point

- 1. Randomly Choose The Next Point
- 2. Choose the next point with the highest predicted variance, Active Learning McKay (ALM)
- 3. Choose the next point with the largest predicted effect on the GP, Active Learning Cohn (ALC)

Methods for picking the next point

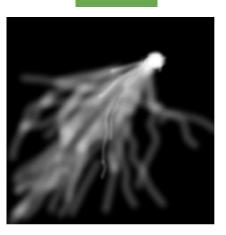
- 1. Randomly Choose The Next Point
- 2. Choose the next point with the highest predicted variance, Active Learning McKay (ALM)
- 3. Choose the next point with the largest predicted effect on the GP, Active Learning Cohn (ALC)
 - Two versions implemented (ALC-mean and ALCmax)

ALM vs ALC Results

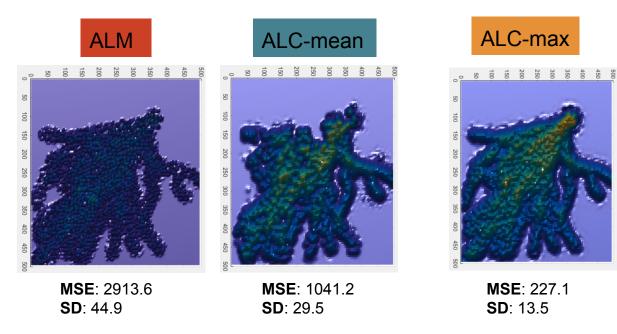
Predict the variances of n random points and choose the point with the highest variance as the next point to train on. Predict the change of the variance of n random points at should each of these n random points be added to the training set. Choose the point with the largest mean change in variance.

ALC-mean

ALC-max


ERC | CISST

Predict the change of the variance of n random points at should each of these n random points be added to the training set. Choose the point with the largest maximum change in variance.



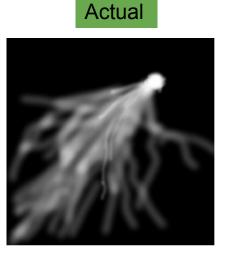
ALM vs ALC Results

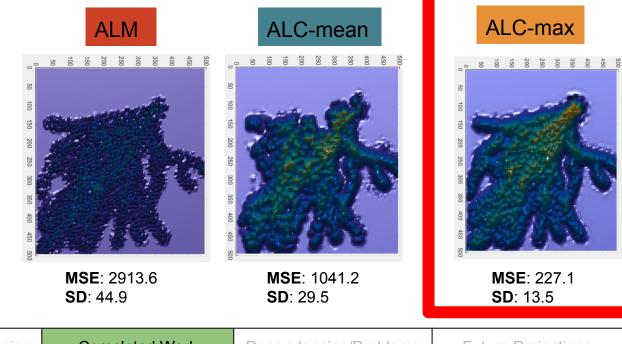
Actual

Future Projections

Background/Project design

Completed Work


Dependencies/Problems


oblems Futur

ALM vs ALC Results

Background/Project design

Completed Work

Dependencies/Problems

ALM ALC-mean ALC-max õ õ Background/Project design **Completed Work** Dependencies/Problems **Future Projections**

Dependencies

- The force sensor has arrived (no longer a dependency)
- Need 1 day to test cartesian stage with Preetham
 - Will happen this week
- Access to mentors for guidance on stiffness model (will discuss more later)
- Phantoms of various shapes (Preetham)

Dependencies/Problems

Problems

 Algorithm efficiency

 When covariance matrix becomes
 large, our GP
 algorithm becomes
 incredibly slow

Tortoise (large cov. matrix) Hare (Small cov. matrix)

ERC | CISST

Dependencies/Problems

Future Work

- Real World Testing
- Incorporation of Stiffness
- Efficiency Improvements
 - Rank+1 Cholesky Decomposition Updating
 - Implement distributions or methods which utilize smaller covariance matrices. These would compare points to nearby points instead of points in the entire model.

Future Projections

- Update stiffness GP to utilize geometric 2. information a. Stiffness and geometry are not
- according to hooke's law: k = F/x

geometry reconstruction GP

independent variables

1. Create GP for stiffness that is independent of Force k a. Stiffness GP will utilize force sensor data

Х

Deliverables		3/24 - 3/30	3/31 - 4/6	4/7 - 4/13	4/14 - 4/20	4/21 - 4/27	4/28 - 5/8
Physical Implementation							
GP Speed Ups							
Force Sensor Attachments							
Implementation using cartesian stage							
Test using various shapes							
Model Registration For Validation							
Stiffness Incorporation							
Implement Stiffness Independent of Geometry							
Fusion with Geometry Implementation							
Compare Stiffness Reconstructions							
Closure phase							
Presentation Preparation							
Project Documentation and Clean Up							

Deliverable

Background/Project design

Completed Work

Dependencies/Problems

Deliverables

- Minimum: Geometry reconstruction of a sample image using Gaussian process
 - Expected: Geometry reconstruction of sample tissue using Gaussian process
 - Utilize cartesian stage
 - **Maximum:** Using geometry reconstruction of sample tissue, create model of stiffness within tissue

Questions?