

Optimized Tissue Structure Modeling

Team 10: Benjamin Strober & Nate Schambach Mentors: Prof. Kobilarov, Prof. Taylor, Preetham Chalasani

Presentation Outline

Project Goals
Background/Project Design
Management
Projections

Project Goals

Determine optimal palpation trajectory for accurate digital tissue reconstruction

Project Goals	Background/Project Design	Management	Projections
---------------	---------------------------	------------	-------------

Theoretical Framework

- Gaussian Process: Model each palpation (force sensor) reading as a gaussian distribution
 - Compute gaussian model of interpolated points within tissue range
- Cross Entropy Method: determine optimal trajectory of palpations
 - Optimal trajectories minimizes variance of gaussian process

Project Goals	Background/Project Design	Management	Projections
---------------	---------------------------	------------	-------------

1

Pseudocode for algorithm

Initialize rough estimate of surface shape
while (variance > threshold) {

- Palpate optimal point and model as gaussian distribution
- Calculate gaussian process
- Model interpolated points within tissue range
- Use cross entropy method to determine optimal next point

Project Goals	Background/Project Design	Management	Projections
---------------	---------------------------	------------	-------------

Initialize rough estimate of surface shape

while (variance > threshold) {

- Palpate optimal point and model as gaussian distribution
- Calculate gaussian process
- Model interpolated points within tissue range
- Use cross entropy method to determine optimal next point

Project Goals	Background/Project Design	Management	Projections
---------------	---------------------------	------------	-------------

Plan For a Plan: Stiffness Incorporation

Using the computed Geometry Reconstruction, perform GP/CEP to compute the full surface tissue reconstruction.

Project Goals	Background/Project Design	Management	Projections
---------------	---------------------------	------------	-------------

Obtaining Data Points

- Cartesian Stage and Force Sensor for physical testing
 - Located within robotorium
 - Test on Model Tissue (Foam Shape)

F ERC | CISST

Potential Applications

- Guiding Exploratory Surgery
 - Accurate real time localization of tumors
 - After finding tumor, guiding surgeon to remove tumor utilizing computer vision techniques and virtual fixtures

Project Goals	Background/Project Design	Management	Projections
---------------	---------------------------	------------	-------------

Deliverables

- **Minimum:** Geometry reconstruction of a sample image using Gaussian process with cross entropy optimization
- Expected: Geometry reconstruction of sample tissue using Gaussian process with cross entropy optimization
 O Utilize cartesian stage
- **Maximum:** Using geometry reconstruction of sample tissue, create model of stiffness within tissue

Project Goals	Background/Project Design	Management	Projections
---------------	---------------------------	------------	-------------

Dependencies

Dependency		<u>Resolution</u>		<u>Projec</u>	ted Date
Force Sensor		Pursue Company		3/3/15	
Force Sensor Attachment		CAD, Rapid Prototype)	3/3/15	
GalilTools		Work with Preetham		3/9/15	
PC for Cartesian Stage		Work with Mentors or	use our own	3/9/15	
Working knowledge of CIS Libraries	ST	Training from Preetha	m	3/16/15	;
Robotorium Access		Contact Alison Morrov	v	2/16/15	5
Dependencies 1-6		Continue with only sin	nulation	Ongoin	g
Access To Expertise		Meetings with Mentors	8	Ongoin	g
Project Goals	Backgro	ound/Project Design	Manageme	nt	Projections

Management

 As we have equivalent skills and there are only two of us, we plan to work side-by-side three times a week

• This worked well for CIS 1

• We are going to meet with Preetham every Tuesday at 4:30

Project Goals	Background/Project Design	Management	Projections
---------------	---------------------------	------------	-------------

Timeline

Deliverables				2/ 16	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Planning phase															
Project Proposal W	rite Up														
Theory Familiarizat	ion														
Existing Code Fam	iliarizatio	n													
Initial Implementat	ion														
GP on Image (code	and impl	ementation)													
Cross Entropy on	Image (c	ode and imple	ement)												
Get Force Sensor															
Attach Force Senso	r + Senso	or Probe													
Cartesian Stage Op	Cartesian Stage Operation														
Physical Implement	ntation														
GP in 3D															
CEP in 3d															
Implementation usi	ng cartesi	ian stage													
Test using various	shapes														
Stiffness Incorpora	Stiffness Incorporation														
Implement Stiffness	Implement Stiffness Independent of Geometry														
Fusion with Geometry Implementation															
Closure phase	Closure phase														
Presentation Prepa	Presentation Preparation														
Project Documenta	tion and (Clean Up													
rt Goals	Ba	ckaround/	Proied	ct De	sian			Ма	nad	eme	nt				Pro

Background Reading

- 1. C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X. c 2006 Massachusetts Institute of Technology.
- 2. Ebden, Mark. *Gaussian Process for Regression: A Quick Introduction*. N.p., Aug. 2008. Web.
- Neal, R.M.: Regression and classification using Gaussian process priors (with discussion). In Bernardo, J.M., et al., eds.: Bayesian statistics 6. Oxford University Press (1998) 475–501
- 4. Williams, C.K.I.: Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In Jordan, M.I., ed.: Learning in Graphical Models. Kluwer Academic (1998) 599–621
- Kroese, D. "The Cross-Entropy Method." A Unified Approach to Combinatorial Optimtimization, Monte-Carlo Simulation and Machine Learning. By R. Rubinstein. N.p.: n. p., n.d. N. pag. Print.