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Project Description 

• Image Processing for Video-CT 

Registration in Sinus Surgery 

•Use contour detection and optical flow 

algorithms to reconstruct surface of 

monocular endoscopic video 

•Register reconstructed surface to CT 

data for intraoperative probe tracking  
 



Paper Selection 

• “Scale-invariant registration of monocular 
endoscopic images to CT-scans for sinus 
surgery” seeks to solve the same problem 
as our project 

• They use monocular sinus endoscopic 
images as opposed to other imaging 
techniques such as fluoroscopy, x-ray, or 
stereoscopic endoscope 

• Uses different image processing from our 
project 



Problem Summary 

• The sinuses are near the brain, eye, and 

major arteries, so high precision is 

necessary during surgery 

• This main goals of the paper are to: 

• Reconstruct the 3D surface geometry 

from monocular endoscopic images 

• Register the camera location to pre-

operative CT image coordinates to track 

the endoscope 

 



Problem Summary 

• Current tracking methods use a navigational 
tracking device and external fiducials 

• Limitations in the context of sinus surgeries: 

• Can’t register to  
anatomical landmarks 

• Can’t account for  
anatomical changes  
during surgery 

• Can’t autonomously  
and repetitively  
register a patient 

 



Architecture 



Key Result Summary 

• After ICP registration, the average error between a set 
of selected points was 0.65 mm, compared to 0.40 mm 
in a fiducial based registration with four fiducials on the 
surface of the brain 

• Able to robustly track ex vivo using a variety of 
anatomical structures such as significant vessel 
structures 

 



Methods: Tracking 



Methods: Initialization 

• System initialized with eight-point algorithm or 

manual feature selection 

• In eight-point algorithm, you can find the essential 

matrix of a system from eight-point correspondences. 

• Essential matrix, 𝐄 , is defined as 𝑝𝑖
∗𝐄 𝑝𝑖 = 0 for two corresponding 

camera projections 𝑝𝑖
∗ and 𝑝𝑖 (in this case, two consecutive 

camera frames) 

• Essential matrix provides rotation matrix 𝐑  and translation vector 

𝐓 such that 𝐄 = 𝐑  ⋅ sk(T) 

• In manual feature selection, the surgeon selects three 

points with known correspondence to the CT-data to 

bootstrap the processing 

 

 

•  

 



Methods: Localization and Mapping 

• Camera motion must be estimated simultaneously with 

reconstruction 

• One way of recovering the motion between two camera 

frames is by using the eight-point algorithm from above 

• In some cases, there may be fewer than eight points to 

match.  They use Burschka and Hager’s method for 

camera localization and mapping with only three point 

correspondences 

• Brief overview of their algorithm follows 

 



Methods: Localization and Mapping 

• Each 3D point 𝑃𝑖 is represented as a direction vector 𝑛𝑖 =
𝑝𝑖

𝑝𝑖
 

and distance to the point 𝐷𝑖 such that 𝑃𝑖 = 𝐷𝑖 ⋅ 𝑛𝑖. Since the 

scale 𝑚 of reconstruction may be unknown, use 𝜆𝑖 =
𝐷𝑖

𝑚
 

• For current frame {𝑃𝑖} and next frame {𝑃𝑖
∗}, estimate 𝐑 and 𝐓 

as such. 
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𝑃𝑖
′ = 𝑃𝑖 − 𝑃𝑖 , 𝑃𝑖

′∗ = 𝑃𝑖
∗ − 𝑃 ∗ 
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𝐓

𝑛
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, 𝑈𝐷𝑉T = svd(𝐌) 

𝑹 = 𝑉 ⋅ 𝑈T, 𝐓 = 𝑃 ∗ − 𝐑𝑃  

• For each new image, start with initial guess for 𝜆𝑖 set to the 
previous distance, then iterate to find true 𝐑, 𝐓, 𝜆𝑖 

 

 



Methods: Scale Recovery 

• The system has an estimate for the current camera 

position. Using this estimate, they carve out a portion of 

the CT surface that they expect is currently visible to the 

camera 

• Look at the covariance matrix between point cloud from 

selected CT region and the current camera 

reconstruction.  

• The two eigenvalues of this matrix from the larger eigenvalues 

define the supporting plane, and the third eigenvector describes the 

depth variation 

• Using the eigenvalues and eigenvectors, they recover the scale 

and rotation between the two point clouds with respect to the 

supporting plane 



Methods: Scale Recovery 

• Fig. 10. After the alignment along the normal 

vector to the supporting plane the scale is 

roughly recovered, but rotation around the 

normal vector is possible. 

Fig. 11. Distance to the 

supporting plane is used as a 

pseudo-image representation to 

match the sparse reconstruction 

(left) to the dense point cloud 

(right). 



Methods: ICP 

• Perform ICP (iterative closest point) between the two point 

aligned point clouds for registration 

• They use a rigid registration as opposed to a deformable 

registration since the anatomy of the nasal and sinus 

cavity is mostly bony tissue 

• They use a covariance tree variation of a k-D tree as their 

data structure 



Relevance 

•As said earlier, this paper seeks to 

solve the same problem we are trying 

to solve using the same kind of 

imaging data 

•They provide alternative image 

processing techniques that we hope to 

learn from and build upon 

 



Assessment 

Pros 

• Overcomes the limitations 

that come with fiducial 

based tracking 

• Ability to get registration 

error of a target region 

that isn’t possible in 

current methods 

• Comparable results to 

fiducial based methods 

 

Cons 

• Still susceptible to large 

anatomical changes e.g. 

bleeding that covers the 

camera 

• More rigorous and 

quantitative testing of ex 

vivo tracking results 



Conclusion 

• They have shown that it is feasible to 

register and track an endoscope using 

image processing techniques 

• We plan to implement a comparable 

workflow with equal or better results using 

different types of image features 



Questions? 

 


