Project Checkpoint: High Precision Drill/Needle Placement with the UR5 using 3D-2D Image Registration

Vignesh Ramchandran and Thomas Yi
Mentors: Dr. Jeff Siewerdsen, Ali Uneri

Overview

- Project Summary
- Progress
- Timeline
- Next Milestones
- Conclusions

Project Summary

- Procedure is generally performed manually
- Precision could be increased with some assistance

Project Summary

- Noninvasive integration of the UR5 robotic arm into the pedicle screw placement procedure

Project Summary

Define UR5 to drive a drillguide to a prescribed pose along CT axis and phantom (patient body) surface

Register optical tracker to CT volume via point cloud to point cloud registration

Perform axis planning in CT volume to define UR5 movement/alignment for placing drill guide

Deliverables

- Minimum Deliverable - Complete
- Enable tracker based guidance for UR5 robot (i.e. register robot to tracking system)
- Experimental minimization of calibration error
- Expected Deliverable - In Progress
- Perform 2D-3D registration between radiographs and CT Volume
- Integrate image-based guidance for UR5
- Experimental optimization of axis planning and error reduction
- Maximum Deliverable - To Be Done
- Devise path planning for desirable robot motion in needle placement

Deliverables

- Minimum Deliverable - Complete
- Enable tracker based guidance for UR5 robot (i.e. register robot to tracking system)
- Experimental minimization of calibration error
- Expected Deliverable - In Progress
- Perform 2D-3D registration between radiographs and CT Volume
- Integrate image-based guidance for UR5
- Experimental optimization of axis planning and error reduction
- Maximum Deliverable - To Be Done
- Devise path planning for desirable robot motion in needle placement

Progress

- Registration of UR5 to optical tracker
- Collection of data
- Initial grid collection
- Improved grid collection
- Validation of $\mathrm{AX}=\mathrm{XB}$ solvers
- Demonstration
- Calibration error analysis
- Resolution of prior dependencies

Workstation

Optical Tracker: NDI

Polaris Spectra

Integration of UR5 with Tracking System

$$
\begin{aligned}
A_{1} * X * B_{1}^{-1} & =A_{2} * X * B_{2}^{-1} \\
A_{2}^{-1} * A_{1} * X & =X * B_{2}^{-1} * B_{1} \\
A X & =X B
\end{aligned}
$$

Grid-Motion Data Collection

- 27 grid points centered upon tracker sweet spot, maximally spaced out to encapsulate largest possible volume of operation
- Vary 3 most distal joints at each grid point to encapsulate additional poses

Grid-Motion Data Collection

- 27 grid points centered upon tracker sweet spot, maximally spaced out to encapsulate largest possible volume of operation
- Vary 3 most distal joints at each grid point to encapsulate additional poses

Validation of $\mathrm{AX}=\mathrm{XB}$ Solvers

Shah, Mili, Roger D. Eastman, and Tsai Hong. "An Overview Of Robot-Sensor Calibration Methods For Evaluation Of Perception Systems". Proceedings of the Workshop on Performance Metrics for Intelligent Systems - PerMIS '12 (2012): n. pag. Web. 4 Feb. 2016.

Calibration Error

- Average Rotational Error:
- 0.059 degrees along the x axis
- -0.301 degrees along the y axis
- 0.060 degrees along the z axis
- Rotational Std. Dev:
- $x=.001$
- $y=.002$
- $z=.001$

Dependencies

1. Transportation from/to medical campus (JHMI Shuttle)
2. Fully operational UR5 that can be modified by program
3. Fully operational optical tracker along with OT markers \downarrow
4. Optical tracking tools (calibrated)
5. Work bench for UR5 mounting
6. Computer for UR5 programmatic control and loaded with visualization software for optical tracking
7. 3D-2D registration software (in TREK) \downarrow
8. ***CT data accompanied by corresponding phantom*** \checkmark
9. Imaging Device to acquire intraoperative radiographs \checkmark
10. Machine shop access to modify drill guide design \checkmark
11. Mentors

Updated Project Timeline

Next Milestones

- Register tracker to CT data
- Complete assembly of drill guide
- Test ability of UR5 to align drill guide along pre-planned axis relative to phantom (with system including optical tracking system)
- Ultimate goal is still a system without an optical tracker

Questions?

Validation of AX=XB Solvers (Initial Grid)

Shah, Mili, Roger D. Eastman, and Tsai Hong. "An Overview Of Robot-Sensor Calibration Methods For Evaluation Of Perception Systems". Proceedings of the Workshop on Performance Metrics for Intelligent Systems - PerMIS '12 (2012): n. pag. Web. 4 Feb. 2016.

Tsai-Lenz Method

$$
\begin{aligned}
\mathrm{Sk}\left(k_{\mathbf{R}_{A_{i}}}+k_{\mathbf{R}_{B_{i}}}\right) k_{\mathbf{R}_{\mathbf{X}}}^{\prime} & =k_{\mathbf{R}_{A_{i}}}-k_{\mathbf{R}_{B_{i}}} \\
k_{\mathbf{R}_{\mathbf{X}}} & =\frac{2 k_{\mathbf{R}_{\mathbf{X}}}^{\prime}}{\sqrt{1+\left|k_{\mathbf{R}_{\mathbf{X}}}^{\prime}\right|^{2}}}
\end{aligned}
$$

where the skew-symmetric matrix

$$
\operatorname{Sk}(\mathbf{x})=\left(\begin{array}{ccc}
0 & -\mathbf{x}(3) & \mathbf{x}(2) \\
\mathbf{x}(3) & 0 & -\mathbf{x}(1) \\
-\mathbf{x}(2) & \mathbf{x}(1) & 0
\end{array}\right)
$$

and the angle of rotation θ for $\mathbf{R}_{\mathbf{X}}$ by setting

$$
\theta=2 \operatorname{atan}\left|k_{\mathbf{R}_{\mathbf{X}}}^{\prime}\right|
$$

Tsai-Lenz Method

$$
R=\left[\begin{array}{ccc}
\cos \theta+u_{x}^{2}(1-\cos \theta) & u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta & u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta \\
u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta & \cos \theta+u_{y}^{2}(1-\cos \theta) & u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \\
u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta & u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta & \cos \theta+u_{z}^{2}(1-\cos \theta)
\end{array}\right]
$$

$$
\left(\begin{array}{c}
\mathbf{R}_{A_{1}}-\mathbf{I} \\
\vdots \\
\mathbf{R}_{A_{n}}-\mathbf{I}
\end{array}\right) \mathbf{t}_{\mathbf{X}}=\left(\begin{array}{c}
\mathbf{R}_{\mathbf{X}} \mathbf{t}_{\mathbf{B}_{1}}-\mathbf{t}_{\mathbf{A}_{1}} \\
\vdots \\
\mathbf{R}_{\mathbf{X}} \mathbf{t}_{\mathbf{B}_{n}}-\mathbf{t}_{\mathbf{A}_{n}}
\end{array}\right)
$$

