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 The paper entitled "1€ Filter: A Simple Speed-based Low-pass Filter for Noisy Input in 
Interactive Systems" presents a simple algorithm to filter noisy signals for high precision and user 
responsivenessi. Noisy signals are problematic in interactive systems because they affect the 
accuracy and precision of the measured information, leading to undesirable and unpredictable 
behaviors. Noise can be caused by heat and magnetic fields, limits of sensor resolution, and 
sometimes unstable numerical computation.  
 
 When noisy signals are used to control interactive systems, they introduce jitter, where 
many different values are observed for a single true one. Low-pass filters are tools that help to 
reduce or remove this unwanted noisy part of a signal. Filters can be implemented as hardware or 
software, depending on the application. An inherent problem with filtering, however, is the 
introduction of time latency, or lag, which reduces the system's responsiveness. In cases where 
interactive feedback is critical to system behavior, the reduction of system responsiveness brought 
on by lag can make performing the desired tasks difficult and unintuitive.   
 
 In our project, we are implementing admittance control of the UR5 for use in Synthetic 
Tracked Aperture Ultrasound (STRATUS) imaging. Our system uses forces measured by the 
Robotiq 150 force-torque sensor attached to the robot end effector as input to define desired end 
effector velocities: 

𝑥"#$ = 𝐾𝑓  (1) 
where 𝑓 ∈ ℝ*+,is the measured forces and torques and 𝐾 is a diagonal matrix of nonlinear gains. 
These velocities are then converted into robot joint velocities, subjected to certain geometric 
constraints referred to as virtual fixtures, and sent to the robot. Because the forces measured play 
such a critical part of the robot control, noise in the signals can greatly affect the behavior of the 
robot. In fact, the blue curve in Figure 1 shows the velocity commands in the x direction of the 
robot base coordinates calculated directly by (1). The orange curve is the result of filtering these 
raw commands with the 1€ filter, as described in detail below. It is clear from the jitter shown on 
the blue curve the extent to which noise affects the output. Since the STRATUS system must be 
able to accurately track the robot end effector for accurate image reconstruction and since the user 
needs to be able to expect robot behavior, as much noise as possible should be removed from the 
signal. Simultaneously, for safety and intuitiveness, the presence of lag should be minimal.  
 
 
 
 
 
 



 
 
 
 
 
  
 
 
 
  
 
 
 
 
 
 
 This paper presents a description of various types of filters before describing how the 1€ 
filter works. The results of an experiment that compare the effectiveness of the 1€ filter to that of 
others are also presented. According to the authors, jitter should be less than 1 mm mean-to-peak, 
and lag should be below 60 ms. The first type of filter the paper describes is a moving average, in 
which n previous data values are used to produce a better estimate of the current one. While this 
is one of the most commonly used filters, it introduces a significant amount of lag. Namely, since 
all n values are weighted equally, the magnitude of lag amounts to n times the sampling period. In 
the STRATUS imaging case, collecting ultrasound (US) images in real time greatly reduces the 
sampling rate. Therefore, a moving average filter would require that the value of n be changed 
whenever the system begins and stops collecting images, an extremely tedious task.  
  
 The second type of filter described is this paper is an exponential smoothing filter. The 
discrete-time realization of such a filter is described by: 

𝑋. = 𝛼𝑋. + 1 − 𝛼 𝑋.-, (2) 
where 𝑋. and 𝑋. are the raw and filtered data, respectively, at time 𝑖 and 𝛼 is a smoothing factor. 
The first term of (2), weighted by 𝛼, denotes the contribution of new input data values, while the 
second term, weighted by (1 − 𝛼), adds inertia from previous values. Jitter decreases with the 
value of 𝛼, while lag behaves inversely. Since the contribution of older values decreases 
exponentially, the lag of these filters is lower than that of high n moving average filters.  
  
 Double exponential smoothing filters extend (2): 
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This filter type was presented by LaViolaii for predictive tracking with the purpose of predicting 

Figure 1 Robot velocity commands without (blue) and with 
(orange) 1€ filtering 



positions 𝜏 time steps in the future. This method seems to be better at maintaining both lag and 
jitter low, but introduce overshoot, particularly when the measurements abruptly change direction 
or magnitude.  

 Kalman filters make assumptions about the system generating the signal. They are typically 
used for navigation and tracking and work well when combining data from different sensors. They 
rely on a process model and a measurement model. A Kalman filter requires initial guesses, 𝑥B, 	𝛴B 
where 𝑥Bis the predicted state guess and 𝛴B is the predicted system covariance. An iterative 
prediction-correction algorithm then follows with: 

𝑥;' = 𝐴𝑥;-, + 𝐵𝑢;-, (5) 
𝛴'; = 𝐴𝛴;-,𝐴J + 𝑄 (6) 

for the prediction steps and:  
𝐾; = 𝛴;'𝐻J 𝐻𝛴;'𝐻J + 𝑅 -, (7) 
𝑥; = 𝑥;' + 𝐾; 𝑧;-𝐻𝑥;'  (8) 
𝛴; = 1 − 𝐾;𝐻 𝛴;'  (9) 

used for correction. In (5) 𝑥;'  is the predicted value at time 𝑡, 𝐴 is the state transition matrix that 
defines the planned transition from one state to another, 𝑥;-,is the corrected value of the previous 
time step, 𝐵 is the input command transition matrix, and 𝑢;-, is the external command input of the 
previous time step. In (6), 𝛴'; is the predicted covariance matrix,		𝛴;-,is the corrected covariance 
matrix of the previous time step and 𝑄 is the covariance in the Gaussian noise. In (7), 	𝐾; is the 
matrix that minimizes the posterior correction, 𝐻 is the linear measurement model that maps 
between system state and observations and 𝑅 is the covariance of the sensors, obtained from the 
manufacturer. In (8), 𝑥; is the correction of the system state, and 𝑧; is the sensor measurement. 
Lastly, in (9), 𝛴; is the corrected covariance of the measured error. Kalman filters can be difficult 
to understand and require knowledge of advanced mathematics. In some cases, the process and 
measurement noise covariances must be determined empirically. If this is done improperly, the 
filter can actually degrade the signal, by creating artificial "overshooting" movements, for 
example. They also require a language or library with matrix operation and are considerably slower 
(about 135 times slower) than double exponential smoothing predictors, with similar jitter and lag 
performanceii.  
  
 The 1€ filter aims to address the weaknesses of all other presented filters. It is an adaptive 
first-order low-pas filter, meaning its cutoff frequency varies for each new sample according to an 
estimate of the signal's speed, or its derivative value. The reason behind this is that humans are 
more sensitive to jitter at low speeds, and more sensitive to lag at high speeds. Therefore, as the 
rate of change in the signal increases, meaning that the system is being used at a higher speed, the 
cutoff frequency also increases to decrease lag. Alternately, lower rates of change in the signal 
causes the cutoff frequency to approach its minimum value, decreasing jitter. The 1€ filter is 
formulated as:  



𝛼 = ,
,< P

QR

 (10) 

where 𝛼 has the same functionality as in (2) but a different formulation, 𝑇# is the sampling period 
and 
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= 𝛼𝑋. + 1 − 𝛼 𝑋.-, (12) 

𝑓W = 𝑓WX.Y + 𝛽 𝑋. (13) 

where 𝑓W is the cutoff frequency, 𝑋. is the derivative of the signal, and  𝑓WX.Y and 𝛽 are the intercept 
and slope, respectively, of 𝑓W. These two last values are the only two configurable parameters 
making the 1€ filter very easy to tune. To do so, the paper recommends setting 𝛽 to 0 and 𝑓WX.Y to 
a value like 1 Hz. Then the system is moved slowly while 𝑓WX.Y is adjusted to remove jitter. After 
that, the system can be moved at faster speeds while 𝛽 is increased in order to minimize lag.  
 
 To compare the 1€ filter with other techniques, the authors created a Python application 
that periodically samples the XY position of their system cursor and adds Gaussian noise with 50 
dB signal-to-noise ratio (SNR) and displayed the filtered cursor positions. The moving average 
filter was tuned first and its performance was used as a baseline. They found that averaging more 
than 14 data values only increased increased lag, so they used that value for n. Every other filter 
was 

tuned as to achieve the same jitter and optimize lag if possible. For one hour, they logged the 
system cursor at 60 Hz during regular desktop use, added white noise and applied the filters. The 
distance between each filtered cursor position to the true one, binned into four speed intervals, 
were recorded.  The results are shown in Figure 2. As seen, the 1€ filter had the lowest error across 
all speed intervals. Additionally, the authors computed the Standard Error of the Mean (SEM) in 

Figure 2 Mean distance between filtered and true cursor position for each speed 
interval and filter. Error bars represent 95% CI. 



mm for each filter. The 1€ filter had the smallest value (0.004), followed by LaViola's double 
exponential smoothing (0.013), the moving average and Kalman filters (0.015), and finally the 
single exponential smoothing filter (0.016). Therefore, of the filters discussed, the 1€ leads to the 
best performance in interactive systems with noisy input. In our use of the 1€ filter, the behavior 
of the robot greatly improves. As previously mentioned, the orange curve Figure 1 above shows 
the result of passing the raw velocity commands through the 1€ filter. The jitter is virtually 
unnoticeable. 
 
 Overall, this paper was very easy to understand and the algorithm was easy to implement. 
The comparisons between the different filter types made the ways in which the 1€ is better than 
existing methods clear. Something that was also very useful was the authors' website, which gives 
clear instructions on how to tune the filter, has an interactive demo for filter comparison and 
sample code in a number of languages. The paper could have benefited from more images, more 
quantitative analyses of the benefits of the 1€ and a mention of additional possible implementations 
of the filter. In the end, this paper proved to be very useful in helping us reduce both jitter and lag 
in control of the UR5 for the STRATUS system. 
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