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1. Introduction 

1.1 Motivation for Machine Learning in Surgical Robotics 
Although the numbers of evidences that justify the cost of robotic surgery remain sparse 
and even discouraging at present, future system will possess a certain degree of 
intelligence that shows the clinical advantage people are looking for. This cognitive 
ability will allow robot to take over simpler parts of the surgery, and let the surgeon focus 
on more crucial and complicated parts of the procedure. 
 
Another reason of the development of robotic surgery is the increasing workload on the 
expert surgeon. This condition has pushed the development of several computerized 
assistants and automations of certain surgical intervention. However, majority of the 
system can only works under assumption that the environment remains invariant with 
respect to robotic action, which severely limit the range of procedures that can be done by 
such system. 
 
This condition could only be recovered with the modeling of robot-environment 
interaction. One of the approaches for robot-environment interaction modeling is explicit 
modeling, such as tissue modeling. However, depending on the choice of model and 
parameter, the applicability of such models can be rather limited. Furthermore, the 
derivation of valid model and the identification of its parameter can be time-consuming 
and tedious task. Given the large variability between people, organs, and tissues, explicit 
modeling approaches have practical limitation 
 
On the other hand, machine learning approach could learns from implicit models directly 
from real sensory data, which makes it appealing for the following reasons: 

• General applicability to wider range of problems and sub-tasks; 
• Avoidance of complex modeling of the underlying physics and biomechanics; 
• Based on data from real case scenarios. 

 

1.2 Introduction to Machine Learning 
Machine learning is a multidisciplinary field that provides the computer a way to learn 
without being explicitly programmed to perform specific task. Although machine 



learning techniques has been used extensively in wide spectrum of robotic application, it 
is only recently considered for surgical robotics. This following figure shows a schematic 
of a machine learning enabled intelligent surgical robotics system for the case of catheter-
based intervention: 
 

 
Figure 1. Schematic of machine learning enabled surgical robot [1] 

 
In surgical robotics, robot uses its sensors to approximate its environment and do some 
action that will minimize some sort of cost function. This mapping between perceptions 
from sensor data to action can be considered as surgical skill. There are multiple ways for 
a robot to learn a surgical skill. First, it could learn from its interaction with environment 
and guess the appropriateness of its action to reach particular target states. Another way 
to learn surgical skill is by observing experiment conducted by expert surgeon. 
Alternatively, the surgeon could also intervene and guide the robot action through 
observation. 
 
In the following, there are three important areas in machine learning are covered: 

• Structured learning: Training data are provided externally, and consists of a set of 
known input vectors along with a set of known corresponding output vectors. 
Example: Support Vector Machine (SVM) 

• Reinforcement Learning: deals with learning policy, i.e. mapping from states to 
action, that tries to maximize numerical reward. Example: Neural Network 

• Unsupervised Learning: the training data consists of a set of input vectors without 
a corresponding set of target vectors. The purpose of unsupervised learning is to 
learn the structure and correlation of the data. Example: k-means clustering 

 

2. Machine learning empowered instrumentation for assisted surgery 

2.1 Surgical skill learning from expert knowledge 
For surgical skill learning, experienced surgeon supplies prior knowledge used for 
machine learning data. Skill learning process usually employs implicit imitation learning 
technique, which is a form of structured learning that accelerates reinforcement learning 
by observation of expert mentor. In this technique, the robot (agent) observes the state 
transitions of surgeon’s (mentor) action, and used these observations to update its own 
states and action. The surgeon and agent might have identical or different action 
capability, and identical or different reward structure. 
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Fig. 1 Overview of a learning system in surgical robotics for the case
of catheter-based interventions. The learning system is augmented with
a process that allows a surgeon to watch the robot and provide advice

based on the behavior of the robot. In the figure, a catheter surgical
robot and the aorta are depicted as examples of a surgical robot and
environment, respectively

skill learning (“Surgical skill learning from expert knowl-
edge” section and “Toward autonomous robotic surgery”
section) and skill analysis (“Skill analysis in robotic surgery”
section) is provided. The robot can learn surgical skills in
multiple ways. First, it could learn from its own interac-
tion with the environment, by evaluating the appropriateness
of the own actions to reach particular target states. The
robot could also learn from human demonstration by observ-
ing experiments conducted by expert surgeons. From such
demonstration, both the surgical skill and the associated cost
function (“Implicit skill analysis” section) used to asses the
quality of the displayed skill can be learned.Alternatively, the
cost function could also be defined explicitly by the domain
expert/surgeon (which is described in “Explicit skill analy-
sis” section). The surgeon could also intervene and guide
through observation of robot actions. The information is pro-
vided by the surgeon (domain expert), which could then be
used to further speed up the learning process. Surgical exper-
tise could also be used to help environment perception. The
surgeon can, e.g., teach how to detect natural landmarks or
relevant anatomies. This information can help the robot to
select adequate (optimal) actions when approaching diffi-
cult or risk-prone areas. Some applications of ML in SR
are introduced in “Toward autonomous robotic surgery” sec-
tion.

In the following, we provide a brief introduction to the
three important areas of ML: supervised learning (SL), rein-
forcement learning (RL), and unsupervised learning (UL).

Supervised learning

In SL [24], training data are provided externally and consist
of a set of known input vectors along with a set of known

corresponding target vectors which might be discrete (clas-
sification) or continuous (regression). SL seeks to build a
predictor model that predicts reasonable target vectors for
new input vectors. The choice of the predictor model is typ-
ically up to the designer and often requires considerable ML
expertise. Learning consists of finding optimal parameter val-
ues for the chosen model. SL could be applied, for instance,
in state estimation.

Reinforcement learning

RL deals with learning a policy, i.e., a mapping from states
to actions. The most popular approaches in RL are value-
function- based approaches such as Q-learning [25]. In these
approaches, the agent learns the optimal value function of a
state action pair. Once the optimal value function is learned,
it is possible to generate the optimal policy (skill) for a
given task from the value function. Intuitively, a value of
a state action pair shows how good it is for the robot (agent)
to execute an action in a given state. The training data for
RL is generated through direct interaction with the environ-
ment and autonomous generation of sequences of experience
tuples. An experience tuple is an entry in a training dataset
at a particular time which consists of the current state, the
current action, the next state and the reward received after
executing the action. An important issue in RL is the trade-
off between exploration and exploitation: In exploration, the
agent tries actions which may be suboptimal according to its
current knowledge but has the potential of resulting in better
outcomes than expected. In exploitation, the agent always
chooses the action which it considers to be optimal at the
risk of missing other actions which turn out to be better in
reality.
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There are three categories in implicit learning group. First group tries to learn mentor’s 
policy; the second group learns the reward function of the mentor’s behaviors and 
optimizes its own behavior using learned reward function. The third group employs a 
Bayesian framework for combining prior (explicit) knowledge and implicit imitation 
learning. 
 

2.2 Skill analysis in robotics surgery 
There are several ways to measure surgical skills: 

• Explicit skill assessment: uses form of cost function defined by expert surgeon. 
• Checklist and rating scales: uses rating scale graded by expert, such as video 

observation. This technique needs a lot of expert time. 
• Structured assessment: uses rated checklist on phantom bench-top model. This 

assessment technique aims to quantifying medical skill evaluation without relying 
on expert evaluator. This technique currently suffers from subjectivity, added 
cost, time, and the need of clinical experts assessment. 

• Outcome-based analysis: uses metric such as number of complication, morbidity, 
and mortality rates. This technique suffers from the fact that the patient outcomes 
are also strongly dependent on patient characteristic, which makes the result not 
directly correlated with the surgeon skill level. 

• Motion analysis: surgeon’s hand or tool motion are recorded and analyzed. This 
technique provides good assessment of dexterity and technical skill level. 

• Time action analysis: surgical procedure broken down into several steps, and the 
time to complete each one is measured. This technique is time consuming, 
because manual labeling of activity is required, and it also do not report how well 
the particular surgical action is performed 

• Virtual reality: potentially offers a vast amount of valuable information for 
assessment and analysis of surgical technique that may not be available from the 
real world. However, this technique performance depends on how well the model 
corresponds to the real environment. 

• Error analysis: number of error made during certain part of the procedure is 
scored. 

• Implicit skill analysis: uses metric, which is learned by a machine learning 
approach from a surgeon or group of surgeon, to rate other surgeons relative to 
the skill of surgeons from which the metric is learned. 

• Classification of surgical skill levels: By recording various data, such as tool 
velocity, from surgeons with various skill levels, it is possible to use unstructured 
learning to cluster and classify skill level. 

 

2.3 Surgical workflow analysis and episode segmentation 
Surgical procedure is a combination of surgical acts, which when pertaining to the same 
specific surgical goal can be grouped into surgical subtasks. Workflow analysis can be 
conducted to identify surgical subtasks that belong to a surgical intervention, the order of 
which subtasks can follow each other and possible termination conditions that mark 
transients between distinct subtasks. The analysis of the surgical workflow is essential to 



assist surgical navigation and enable design of cognitive surgical system that can adapt 
and operate in highly dynamic environments. 
 
So far, the analysis of surgical workflow has been extensively studied for minimally 
intensive surgery. The approaches proposed in the literatures can be classified into 
methods for segmentation of high—level surgical tasks, method to recognize low-level 
task, and into offline and online approach. 
 

3. Toward autonomous robotic surgery 

3.1 The role of machine learning in autonomous robotic surgery 
This following table summarizes different aspect that could be constructed and learned 
directly from data with machine learning approach: 

 
Table1. Aspects of autonomous robotic surgery [1] 

3.2 Example of machine learning used in surgical robotic research 
• Intelligent autonomous endoscopic guidance system: Development of endoscope 

that have automatic steering system that could visualize patient’s organs alongside 
instruments for grasping, cutting, ablating, and so on. 

• Autonomous knot tying: Development of autonomous suturing and knot tying for 
minimally invasive surgery that helps surgeon to achieve faster surgery. 

• Knot tying with neural network: Using recurrent neural network to tie knots 
autonomously, which reported to speed up the knot tying process and reduces the 
overall time of the surgical intervention. 

• Knot tying via trajectory transferring: A system that could tie knots in ropes by 
training the robot by human demonstration 

• Superhuman performance of surgical tasks: the robot could execute tasks with 
super human performance, such as smoother and faster movement. 

• Skill transfer from surgeon teleoperator to flexible robot: development of a 
method based on inverse reinforcement learning to transfer skill from surgeon 
teleoperator to flexible robot. 

• GMM-/GMR-based learning from demonstration:: development of a method to 
learn the model of the interaction between catheter and aorta using GMM 
algorithm. 
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Table 1 Aspects of autonomous robotic surgery (ARS) where ML could play an enabling role

Workflow analysis episode segmentation Surgical procedure broken down into logical subtasks or episodes

Environment modeling Rigid and flexible registration, reconstruction of environment, recognition of anatomical
features and landmarks, mechanical and physiological modeling

Localization Localization of instrument/robot w.r.t. environment

Robot control Low-level modeling and robot control

Skill analysis Analysis of surgical skill, derivation of performance metrics or cost functions for optimization

Critical event detection Detection of adverse events

Planning and control High-level trajectory and interaction planning, error handling

level of performance in executing the necessary surgical acts
under similar surgical conditions, one might consider to let
the robot perform these surgical gestures in an autonomous
fashion. Different technologies introduced in preceding sec-
tions could serve here as building blocks. These blocks could
for example be plugged into the framework proposed by
Muradore et al. [19] who follow a model-based approach.
This means that the entire procedure and its different com-
ponents are explicitly modeled. An ML-based variant of
this approach could also be envisaged. In such case, mod-
els of the procedure, environment, instrument, etc., could be
constructed and learned directly from the data. Table 1 sum-
marizes the different aspects that could be covered in such
case.

For an excellent review on works on autonomous and
semiautonomous robotic surgery, we gladly refer to the work
by Moustris et al. [70]. Table 2 shows that robotic autonomy
has been studied in a very broad set of surgical domains.
A number of papers are reported to be generally applicable
across domains or introduce general frameworks to support
ARS. The second part of the Table shows that substantial
efforts have been done to automate a wide range of sur-
gical gestures. Figure 2 gives a fair idea of the evolution
in ARS (despite being based on a non-exhaustive set of
ARS papers). It can be seen that the number of papers deal-
ing with ARS is steadily growing over time. Furthermore,
when looking at the share of ARS papers that employ ML
techniques, one can appreciate that also this share grows
accordingly. A detailed discussion of each of these works
falls outside the scope of this work, rather it is opted to dis-
cuss a selection of works in more detail in the following
section.

Examples of ML used in SR research

Intelligent autonomous endoscopic guidance system

Modern laparoscopic surgery or MIS procedures make use
of three or four access ports through which a plurality of
instruments is inserted in the body. Typically, this includes

an endoscope that is used to visualize the patient’s organs
alongside instruments for grasping, cutting, ablating and so
on. Casals et al. [96] a.o. conducted research to automatically
steer laparoscopes in such configuration. In order for such
tracking system to behave in an automatic fashion, steering
must be extremely reliable. This implies that such system
should be capable of tracking all aspects of the procedure
and in a robust fashion. In contrast to the short-term pre-
diction, steps associated with typical control schemes that
focus on the compensation of physiological motion such as
heartbeat and breathing [99,107,116,154],Weede et al. [100]
advocate the development of long-term prediction schemes
that anticipate upon what the surgeon is going to do dur-
ing the next couple of minutes, so that the endoscope can
always be moved to an appropriate position. To this end,
Weede et al. proposed an intelligent endoscopic guidance
system (Fig. 3). The system collects information on the
movements of the instruments from former interventions and
predicts based on this knowledge trajectories that are used to
autonomously guide the endoscopic camera. The knowledge
is extracted by trajectory clustering, maximum-likelihood
classification and a Markov model to predict the procedural
states. Although encouraging results were reported, a better
understanding of the ongoing tasks and the surgeon’s intent
were mentioned as possible ways to further improve the sys-
tem response.

Autonomous knot-tying

Surgeons frequently have to tie knots to connect tissues or
close openings. In MIS, where access and maneuverability
are limited and haptic feel is typically poor if not absent,
knot-tying is a tedious job. Whereas in open surgery a knot
can be tightened within a few seconds, in MIS this can take
up to three minutes per knot [115]. As a consequence, many
research has been conducted to automate suturing and knot-
tying, which is also evident from Table 2. Research was also
conducted to apply ML to solve suturing and knot-tying. For
example, Mayer et al. published a series of works to this end
[115,118,119,121].
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3.3 Potential applications of machine learning in surgical robots 
• Automation of the surgical operation: Machine learning technique can be 

employed to steer surgical robots to safely, accurately, and faster speed execution 
of specific surgical tasks. 

• Training surgeons: Machine learning approaches can be used to learn statistical 
model of surgical skills of experienced model to quantify the surgical skills of 
trainees. 

• Classification and standardization of medical practice: Machine learning 
techniques are able to develop statistical model, splitting the surgical techniques 
into several steps, and per step learning the best medical practice from all of the 
surgeons for a given situation. 

• Saving best strategies of an experienced surgeon: Machine learning can be used to 
learn the skill of experienced surgeon and save it for later operating room used or 
training young surgeon 

• Safe interaction between environment and surgical robots: Machine learning 
could be further used to model the environment in greater details, which is 
essential to the control and decision making process to figure out how to safely 
interact with fragile dynamic environment. 

• Safe interaction between surgeons and surgical robots: Machine learning could 
help guaranteeing the safety of the surgeon in human-robot interaction. 

3.4 Challenges for further work: 
• High-quality medical/surgical data: the need of large quantities of high-quality 

medical data to train machine learning technique; 
• Modeling challenge: Dynamic and deforming nature of living body restrict the 

use of preoperatively estimated 3D maps and requires analysis of intraoperative 
data; 

• Learning and defining skill analysis metric: finding metrics that adequately 
capture the characteristic of best practice; 

• Adaptation to unknown or yet observed situations: system need to be able to cope 
with unpredictable situations and guarantees the safety of the patient. 

 4. Conclusion 
• There are various machine learning techniques that can be employed to surgical 

robotics. 
• It is possible to extract the needed mapping from perception to action for various 

surgical tasks and quantitatively analyze learned skills 
• Subdividing surgical procedure into individual surgical task through episode 

segmentation helps management of the learning process. 
• By embedding surgical robot with appropriate decision-making mechanism to 

choose appropriate skill at appropriate time, robot could gain autonomy overtime. 
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