CBCT Brain Perfusion: Phantom and Digital Simulator

Computer Integrated Surgery II

Karthik Chellamuthu and Michael Mow

Project Advisors: Jeff Siewerdsen Ph.D Wojciech Zbijewski Ph.D Alejandro Sisniega Ph.D

I-STAR LAB

Project Motivation and Relevance

• Acute stroke is the third leading cause of death in the US (approximately 1 in 15 deaths)

urgery, Therapy, and Radiology

- The recoverable time window is a matter of hours, making speed a priority.
- There is a pressing need for fast, accurate detection and evaluation of acute stroke

The I-STAR Lab

 A dedicated Cone-Beam Computed Tomography (CBCT) scanner for the detection and evaluation of intracranial hemorrhage (ICH) is being developed at JHMI

rgery, Therapy, and Radiology

The I-STAR Lab

- Diagnosis of ischemic stroke, as opposed to hemorrhagic stroke requires contrast enhanced CT perfusion images, aiming to answer two questions of imaging acute stroke:
 - Is there an ischemic core of critically irreversibly infarcted tissue?
 - Is there a "penumbra" of severely ischemic but recoverable tissue?

Our aim is to evaluate the feasibility of CBCT scanner in conjunction with perfusion imaging by constructing a digital and physical phantom to reliably characterize perfusion parameters among a wide range of ischemic stroke cases.

Perfusion Imaging

Technical Approach for Digital Phantom

CBCT Brain Perfusion

The I-STAR Lab

Imag

for Surgery, Therapy, and Radiology

Design Approach for Physical Phantom

CBCT Brain Perfusion

The I-STAR Lab

Imaging for Surgery, Therapy, and Radiology

Design Approach of Physical Phantom

JOHNS HOPKINS UNIVERSITY

CBCT Brain Perfusion

The I-STAR Lab

Imaging for Surgery, Therapy, and Radiology

Minimum

The I-STAR Lab

- Generate time attenuation curves for a wide range of stroke cases
- Complete a forward projection and reconstruction of a region of interest in the digital head phantom
- Perform validation by testing entire range of scan speeds and corresponding impact on accuracy

Expected

• Survey existing product landscape

Therapy, and Radiology

- Develop flow models using CAD software
- Design and fabricate physical phantom
- Develop control system to derive optimal input parameters for specified perfusion parameters

Maximum

- Thorough testing and measurements of time attenuation profiles and perfusion parameters in the phantom
- Submission to conference

Dependencies

BIOMEDICAL ENGINEERIN

Dependencies for Digital Phantom

The I-STAR Lab

• Access to a GPU Workstation (Met)

urgery, Therapy, and Radiology

- If Workstation fails, access to various other GPU workstations in I-STAR lab through remote desktop (Met)
- Access to CUDA Tools (Met)
- Digital Brain Phantom (Met)

Dependencies for Physical Phantom

- Access and training for 3D Printer in Carnegie at JHMI (Met)
 - If 3D printer breaks or becomes unavailable, other options include fabrication at the JHU BME Design Studio, the JHU Digital Media Center, or outsource to other makerspace
- Access and training for machine shop at JHMI (Unmet, training will take place in March)
 - Other options for machine shop access may include Wyman Park Building machine shop or outsourced components
- Access to a CT scanner for testing (Met)
 - If CT bench in I-STAR lab breaks or becomes unavailable, we will consult our advisors about finding a substitute facility such as a clinical CT scanner

Advising Dependencies

- Funding for physical phantom component (Met)
 - We have obtained verbal agreement for funding from our advisors
- Availability of collaborators (Met)
- We have arranged weekly meetings on Monday mornings with our advisors to obtain feedback and advice towards completing our project.
 CBCT Brain Perfusion

February 25: Finalize Literature Review

ery, Therapy, and Radiology

February 25: Submit proposal documents

February 29: Complete forward projection for digital phantom

March 7: Complete reconstruction algorithm for digital phantom

March 7: Propose Budget and Begin ordering Parts

March 14: Finalize digital phantom (Minimum Deliverable)

March 14-21: Spring Break

The I-STAR Lab

March 28: Finalize design of physical phantom (Expected Deliverable)

April 25: Complete testing and standardization of the physical phantom (Maximum Deliverable) May 06: Final report Presentation

Karthik	Michael
Lead proposal of physical phantom	Lead design of digital simulator
Extensive survey of existing product landscape	MATLAB implementation using CudaTools
Phantom testing protocol	MATLAB code documentation
Administrative Operations (i.e. Budget Proposal, BitBucket management, etc.)	Fabrication of phantom
Dovelop CAD/flow simulation	

Develop CAD/flow simulation Design physical phantom component layout

Reading List

- Boese, A., Gugel, S., Serowy, S., Purmann, J., Rose, G., Beuing, O., ... Deuerling-Zheng, Y. (2013). Performance evaluation of a C-Arm CT perfusion phantom. *International Journal of Computer Assisted Radiology and Surgery*, *8*(5), 799–807. http://doi.org/10.1007/s11548-012-0804-4
- Chiribiri, A., Schuster, A., Ishida, M., Hautvast, G., Zarinabad, N., Morton, G., ... Nagel, E. (2013). Perfusion phantom: An efficient and reproducible method to simulate myocardial first-pass perfusion measurements with cardiovascular magnetic resonance. *Magnetic Resonance in Medicine*, *69*(3), 698–707. http://doi.org/10.1002/mrm.24299
- Driscoll, B., Keller, H., & Coolens, C. (2011). Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT. *Medical Physics*, 38(8), 4866. http://doi.org/10.1118/1. 3615058
- Ebrahimi, B., Swanson, S. D., Mosadegh, B., & Chupp, T. E. (2008). A Perfusion Phantom for Quantitative Medical Imaging. SPIE Digital Library, 6913, 69130W–69130W–8. http://doi. org/10.1117/12.770894
- Fee, C., Nawada, S., & Dimartino, S. (2014). 3D printed porous media columns with fine control of column packing morphology. *Journal of Chromatography A*, 1333, 18–24. http://doi.org/10. 1016/j.chroma.2014.01.043
- Ganguly, a., Fieselmann, a., Boese, J., Rohkohl, C., Hornegger, J., & Fahrig, R. (2012). In vitro evaluation of the imaging accuracy of C-arm conebeam CT in cerebral perfusion imaging. *Medical Physics*, 39(11), 6652. http://doi.org/10.1118/1.4757910
- Hindle, A. J., & Perkins, A. C. (1994). A perfusion phantom for the evaluation of ultrasound contrast agents. Ultrasound in Medicine and Biology, 20(3), 309–314. http://doi.org/10.1016/0301-5629(94)90071-X
- Ionita, C. N., Mokin, M., Varble, N., Bednarek, D. R., Xiang, J., Snyder, K. V., ... Rudin, S. (2014). Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. *Proceedings Society of Photo-Optical Instrumentation Engineers*, 9038(716), 90380M. http://doi.org/10.1117/12.2042266
- Klotz, E., & Konig, M. (1999). Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. *European Journal of Radiology*, 30, 170–184. http://doi.org/10.1016/S0720-048X(99)00009-1
- M, W. (2006). CT Perfusion of the Brain: The Basics of the method and interpreting images. Visions, 6-8.
- Miles, K. A., & Griffiths, M. R. (2003). Perfusion CT: A worthwhile enhancement? British Journal of Radiology, 76(904), 220–231. http://doi.org/10.1259/bjr/13564625
- Noguchi, T., Yoshiura, T., Hiwatashi, A., Togao, O., Yamashita, K., Kobayashi, K., ... Honda, H. (2007). Quantitative perfusion imaging with pulsed arterial spin labeling: a phantom study. *Magnetic Resonance in Medical Sciences : MRMS : An Official Journal of Japan Society of Magnetic Resonance in Medicine*, 6(2), 91–97. <u>http://doi.org/10.2463/mrms.6.91</u>
- R.G. Gonzalez, J.A. Hirsch, W.J. Koroshetz, M.H. Lev, P. Schaefer. (2006). Acute Ischemic Stroke: Imaging and Intervention Second Edition. Springer-Verlag

Sheikh, S., González, R. G., & Lev, M. H. (2012). (Cta).

Wood, R. P., Khobragade, P., Ying, L., Snyder, K., Wack, D., Bednarek, D. R., ... Ionita, C. N. (2015). Initial testing of a 3D printed perfusion phantom using digital subtraction angiography, 9417, 94170V. http://doi.org/10.1117/12.2081471